Senebandith Holly, Albreiki Fahed, Kohl Phillip A, Odenheimer Arthur, Pyone Khin C, Li Youli, Srivastava Samanvaya
Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.
Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.
ACS Macro Lett. 2025 May 20;14(5):544-550. doi: 10.1021/acsmacrolett.5c00029. Epub 2025 Apr 16.
We examine the swelling and dehydration-rehydration response of triblock polyelectrolyte complex (PEC) hydrogels using small-angle X-ray scattering and rheology to demonstrate that PEC hydrogel microstructures equilibrate readily into morphologies corresponding to PEC hydrogels with comparable polymer contents. As such, we show that PEC hydrogels possess identical microstructures independent of the route employed to make them. We propose PEC domain fission as the dominant mechanism for these microstructural rearrangements. Furthermore, we show that mixing two fully formed PEC hydrogels with distinct microstructures leads to microstructural rearrangements, resulting in hydrogels with intermediate microstructure and viscoelastic properties of the individual PEC hydrogels. Our findings provide explicit experimental proof that PEC hydrogel microstructures are not kinetically trapped and have implications for their processing in diverse applications.
我们使用小角X射线散射和流变学研究了三嵌段聚电解质复合物(PEC)水凝胶的溶胀及脱水-再水化响应,以证明PEC水凝胶微结构能迅速平衡为与具有可比聚合物含量的PEC水凝胶相对应的形态。因此,我们表明,PEC水凝胶具有相同的微结构,与制备它们所采用的途径无关。我们提出PEC域裂变是这些微结构重排的主要机制。此外,我们表明,将两种具有不同微结构的完全形成的PEC水凝胶混合会导致微结构重排,从而产生具有中间微结构和各个PEC水凝胶粘弹性的水凝胶。我们的研究结果提供了明确的实验证据,证明PEC水凝胶微结构并非动力学上被困住的,这对其在各种应用中的加工具有启示意义。