Xie Mengqi, Younas Khan Muhammad, Ullah Saif, Farooq Muhammad, Riaz Muhammad Bilal, Alwan Basem Al
Department of ElectronicInformation Engineering, Xi'an Technological University, Xi'an, China.
Departmentof Mathematics, University of Peshawar, Khyber Pakhtunkhwa, Pakistan.
PLoS One. 2025 Apr 16;20(4):e0317408. doi: 10.1371/journal.pone.0317408. eCollection 2025.
This paper presents an innovative mathematical model for assessing the dynamics and optimal control of Nipah virus (NiV) with imperfect vaccination. The model formulation considers transmissions through contaminated food and human-to-human contacts. It also incorporates the potential virus transmission through contact with a deceased body infected with NiV. Initially, the NiV model is assessed theoretically, identifying three distinct equilibrium states: the NiV-endemic equilibrium state, the NiV-free equilibrium state, and the equilibrium state involving infected flying foxes. Furthermore, the stability results of the model in the case of constant controls are thoroughly analyzed at the NiV-free equilibrium. Some of the parameters of the model are estimated based on the infected cases documented in Bangladesh from 2001 to 2017. We further perform sensitivity analysis to determine the most influential parameters and formulate effective time-dependent controls. Numerical simulations indicate the optimal course of action for eradicating the disease and provide a comparative analysis of controlling the infection under constant and time-varying interventions. The simulation confirms that the implementation of time-varying interventions is effective in minimizing disease incidence.
本文提出了一种创新的数学模型,用于评估不完全疫苗接种情况下尼帕病毒(NiV)的动态变化和最优控制。该模型构建考虑了通过受污染食物以及人际接触的传播。它还纳入了通过接触感染尼帕病毒的尸体而产生的潜在病毒传播。最初,对尼帕病毒模型进行理论评估,确定了三种不同的平衡状态:尼帕病毒地方性平衡状态、无尼帕病毒平衡状态以及涉及感染狐蝠的平衡状态。此外,在无尼帕病毒平衡状态下,对恒定控制情形下模型的稳定性结果进行了深入分析。基于2001年至2017年孟加拉国记录的感染病例对模型的一些参数进行了估计。我们进一步进行敏感性分析,以确定最具影响力的参数,并制定有效的随时间变化的控制措施。数值模拟表明了根除该疾病的最佳行动方案,并对恒定干预和随时间变化的干预下控制感染进行了比较分析。模拟证实,实施随时间变化的干预措施对于将疾病发病率降至最低是有效的。