Khan Muhammad Altaf, Ullah Saif, Kumar Sunil
Informetrics Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
Eur Phys J Plus. 2021;136(2):168. doi: 10.1140/epjp/s13360-021-01159-8. Epub 2021 Feb 3.
The new coronavirus disease is still a major panic for people all over the world. The world is grappling with the second wave of this new pandemic. Different approaches are taken into consideration to tackle this deadly disease. These approaches were suggested in the form of modeling, analysis of the data, controlling the disease spread and clinical perspectives. In all these suggested approaches, the main aim was to eliminate or decrease the infection of the coronavirus from the community. Here, in this paper, we focus on developing a new mathematical model to understand its dynamics and possible control. We formulate the model first in the integer order and then use the Atangana-Baleanu derivative concept with a non-singular kernel for its generalization. We present some of the necessary mathematical aspects of the fractional model. We use a nonlinear fractional Lyapunov function in order to present the global asymptotical stability of the model at the disease-free equilibrium. In order to solve the model numerically in the fractional case, we use an efficient modified Adams-Bashforth scheme. The resulting iterative scheme is then used to demonstrate the detailed simulation results of the ABC mathematical model to examine the importance of the memory index and model parameters on the transmission and control of COVID-19 infection.
新型冠状病毒病仍然是令全世界人民极度恐慌的重大事件。全球正在应对这一新型大流行病的第二波疫情。人们考虑采用不同方法来应对这种致命疾病。这些方法是以建模、数据分析、控制疾病传播以及临床视角的形式提出的。在所有这些建议的方法中,主要目标是消除或减少社区中冠状病毒的感染。在此,在本文中,我们专注于开发一种新的数学模型以了解其动态特性和可能的控制方法。我们首先以整数阶形式构建模型,然后使用具有非奇异核的阿坦加纳 - 巴莱努导数概念对其进行推广。我们给出了分数阶模型的一些必要数学方面的内容。为了呈现模型在无病平衡点处的全局渐近稳定性,我们使用了一个非线性分数阶李雅普诺夫函数。为了在分数阶情况下对模型进行数值求解,我们使用了一种高效的修正亚当斯 - 巴什福思格式。然后,所得的迭代格式被用于展示ABC数学模型的详细模拟结果,以检验记忆指数和模型参数对COVID - 19感染传播和控制的重要性。