Suppr超能文献

基于实际数据应用的恒速和时变接种与治疗的 Nipah 感染最优控制分析。

Optimal control analysis for the Nipah infection with constant and time-varying vaccination and treatment under real data application.

机构信息

Department of Mathematics, University of Peshawar, Peshawar, KP, 25000, Pakistan.

Department of Mathematics, Faculty of Science and Technology, Universitas Airlangga, Surabaya, 60115, Indonesia.

出版信息

Sci Rep. 2024 Jul 30;14(1):17532. doi: 10.1038/s41598-024-68091-6.

Abstract

In the last two decades, Nipah virus (NiV) has emerged as a significant paramyxovirus transmitted by bats, causing severe respiratory illness and encephalitis in humans. NiV has been included in the World Health Organization's Blueprint list of priority pathogens due its potential for human-to-human transmission and zoonotic characteristics. In this paper, a mathematical model is formulated to analyze the dynamics and optimal control of NiV. In formulation of the model we consider two modes of transmission: human-to-human and food-borne. Further, the impact of contact with an infected corpse as a potential route for virus transmission is also consider in the model. The analysis identifies the model with constant controls has three equilibrium states: the NiV-free equilibrium, the infected flying foxes-free equilibrium, and the NiV-endemic equilibrium state. Furthermore, a theoretical analysis is conducted to presents the stability of the model equilibria. The model fitting to the reported cases in Bangladesh from 2001 to 2015, and the estimation of parameters are performed using the standard least squares technique. Sensitivity analysis of the model-embedded parameters is provided to set the optimal time-dependent controls for the disease eradication. The necessary optimality conditions are derived using Pontryagin's maximum principle. Finally, numerical simulation is performed to determine the most effective strategy for disease eradication and to confirm the theoretical results.

摘要

在过去的二十年中,尼帕病毒(NiV)已成为一种由蝙蝠传播的重要副黏液病毒,可导致人类严重的呼吸道疾病和脑炎。由于其具有人际传播的潜力和人畜共患的特征,NiV 已被世界卫生组织列入优先病原体蓝图清单。本文建立了一个数学模型来分析 NiV 的动力学和最优控制。在模型的制定中,我们考虑了两种传播方式:人际传播和食源性传播。此外,还考虑了接触受感染尸体作为病毒传播的潜在途径对模型的影响。分析表明,具有常数控制的模型有三个平衡点:无 NiV 平衡点、无感染果蝠平衡点和 NiV 流行平衡点。此外,还进行了理论分析以确定模型平衡点的稳定性。利用标准最小二乘法对 2001 年至 2015 年在孟加拉国报告的病例进行了模型拟合和参数估计。对模型嵌入参数进行了敏感性分析,以确定用于消除疾病的最佳时变控制。利用庞特里亚金极大值原理推导出了必要的最优性条件。最后,进行了数值模拟以确定消除疾病的最有效策略,并验证了理论结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/267f/11289478/843ad56fa690/41598_2024_68091_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验