Sinisalo Heikki, Laine Mikael, Nieminen Jaakko O, Souza Victor H, Matsuda Renan H, Soto Ana M, Ukharova Elena, Mutanen Tuomas, Rissanen Ilkka, Stenroos Matti, Koponen Lari M, Ilmoniemi Risto J
Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.
Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.
Brain Stimul. 2025 May-Jun;18(3):948-956. doi: 10.1016/j.brs.2025.04.014. Epub 2025 Apr 14.
In transcranial magnetic stimulation (TMS), a pulse of current driven through a coil on the scalp induces an electric field on the cortex, eliciting neuronal activation. Multi-locus TMS (mTMS) uses multiple coils to generate various electric field patterns, enabling electronic control of stimulation location and orientation. However, changing the stimulation target with mTMS can take up to a few seconds when the driving voltages are adjusted for each coil.
To investigate whether multi-coil TMS combined with pulse-width modulation (PWM) in the microsecond scale could be used to overcome the issue of rapid pulse delivery to different cortical targets.
We devised a methodology to generate and drive PWM approximations of given reference pulses. We compared resting motor thresholds (RMTs) and motor evoked potentials (MEPs) between trapezoidal and PWM pulses in several multi-coil targeting scenarios.
The cortical electric field of PWM pulses had high temporal complexity, but the pulse types showed no statistically significant differences when stimulating with 2- or 3-coil combinations. With PWM pulses using five coils, the RMT increased by 9 % (p = 0.06), and MEP amplitudes decreased by 20 % with stimulation doses over 120 % RMT (p < 0.05).
Motor responses with trapezoidal and PWM pulses were equivalent when using two or three coils concurrently, but some differences were found with five coils. Using PWM with multi-coil TMS device to control the stimulation targets in millisecond-scale is feasible, although more research is needed to understand the neurophysiological effects of increasing coil count.
在经颅磁刺激(TMS)中,通过头皮上的线圈驱动的电流脉冲会在皮质上诱发电场,从而引发神经元激活。多位点TMS(mTMS)使用多个线圈来产生各种电场模式,从而实现对刺激位置和方向的电子控制。然而,当为每个线圈调整驱动电压时,使用mTMS改变刺激目标可能需要长达几秒的时间。
研究微秒级多线圈TMS结合脉宽调制(PWM)是否可用于克服向不同皮质目标快速输送脉冲的问题。
我们设计了一种方法来生成和驱动给定参考脉冲的PWM近似值。我们在几种多线圈靶向场景中比较了梯形脉冲和PWM脉冲之间的静息运动阈值(RMT)和运动诱发电位(MEP)。
PWM脉冲的皮质电场具有较高的时间复杂性,但在使用2或3个线圈组合进行刺激时,脉冲类型在统计学上没有显著差异。对于使用五个线圈的PWM脉冲,当刺激剂量超过120%RMT时,RMT增加了9%(p = 0.06),MEP波幅降低了20%(p < 0.05)。
同时使用两个或三个线圈时,梯形脉冲和PWM脉冲的运动反应相当,但使用五个线圈时发现了一些差异。使用PWM与多线圈TMS设备在毫秒级控制刺激目标是可行的,尽管需要更多研究来了解增加线圈数量的神经生理效应。