Zang Shihao, Paul Sanjib, Leung Cheuk W, Chen Michael S, Hueckel Theodore, Hocky Glen M, Sacanna Stefano
Department of Chemistry, New York University, New York, NY, USA.
Simons Center for Computational Physical Chemistry, New York University, New York, NY, USA.
Nat Commun. 2025 Apr 17;16(1):3645. doi: 10.1038/s41467-025-58959-0.
Crystallization stands as a prime example of self-assembly. Elementary building blocks converge, seemingly adhering to an intricate blueprint, orchestrating order from chaos. While classical theories describe crystallization as a monomer-by-monomer addition, non-classical pathways introduce complexity. Using microscopic charged particles as monomers, we uncover the mechanisms governing the formation of ionic colloidal crystals. Our findings reveal a two-step process, wherein metastable amorphous blobs condense from the gas phase, before evolving into small binary crystals. These small crystals then grow into large faceted structures via three simultaneous processes: addition of free monomers from bulk, capture and absorption of surrounding blobs, and oriented attachment of other crystals. These complex crystallization pathways occur both in bulk and on surfaces across a range of particle sizes and interaction strengths, resulting in a diverse array of crystal types and morphologies. Harnessing our ability to tune the interaction potential through small changes in salt concentration, we developed a continuous dialysis approach that allows fine control over the interaction strength in both time and space. This method enables us to discover and characterize various crystal structures in a single experiment, including a previously unreported low-density hollow structure and the heteroepitaxial formation of composite crystal structures.
结晶是自组装的一个典型例子。基本构建单元聚集在一起,似乎遵循着一个复杂的蓝图,从混乱中编排秩序。虽然经典理论将结晶描述为逐个单体的添加,但非经典途径引入了复杂性。我们使用微观带电粒子作为单体,揭示了控制离子胶体晶体形成的机制。我们的研究结果揭示了一个两步过程,其中亚稳态的无定形团块从气相中凝聚,然后演变成小的二元晶体。这些小晶体随后通过三个同时进行的过程生长成大的多面结构:从本体中添加游离单体、捕获和吸收周围的团块以及其他晶体的定向附着。这些复杂的结晶途径在各种粒径和相互作用强度的本体和表面上都会发生,从而产生了各种各样的晶体类型和形态。利用我们通过盐浓度的微小变化来调节相互作用势的能力,我们开发了一种连续透析方法,该方法允许在时间和空间上对相互作用强度进行精细控制。这种方法使我们能够在单个实验中发现和表征各种晶体结构,包括一种以前未报道的低密度空心结构以及复合晶体结构的异质外延形成。