Zhong Guangcai, Yi Xin, Gao Shutao, Zhao Shizhen, Mo Yangzhi, Tian Lele, Xu Buqing, Wang Fu, Liao Yuhong, Li Tengfei, Wu Liangliang, Wang Yunpeng, Chen Yingjun, Xu Yue, Zhu Sanyuan, Yu Linbo, Li Jun, Peng Ping'an, Zhang Gan
State Key Laboratory of Advanced Environmental Technology (SKLAET), Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China.
Nat Commun. 2025 Apr 16;16(1):3622. doi: 10.1038/s41467-025-58865-5.
Polycyclic aromatics are ubiquitous in the interstellar medium and meteorites, yet the search for lunar polycyclic aromatics remains a significant challenge. Here, we analyze Chang'E-5 lunar soil samples, revealing polycyclic aromatic concentrations of 5.0-9.2 µg/g (average: 7.4 ± 1.4 µg/g). Their aromatic structures are highly condensed, comparable to ~4 nm graphene sheets, and distinct from terrestrial analogs, such as wood char, soot and kerogen. While meteorite impacts are the most likely sources, the stable carbon isotope composition of polycyclic aromatics in Chang'E-5 lunar soil (δC: -5.0 ± 0.6‰ to +3.6 ± 1.3‰) is more enriched in C compared to that in meteorites. This enrichment suggests a de novo formation mechanism during meteorite impacts, involving the conversion of non-aromatic organic matter-which is more enriched in δC-into polycyclic aromatics. This process may play a significant role in carbon accretion in lunar regolith, as the resulting polycyclic aromatics are more stable and resistant to degradation compared to smaller organic molecules (e.g., amino acids), which are largely destroyed during impact events.
多环芳烃在星际介质和陨石中普遍存在,但寻找月球多环芳烃仍然是一项重大挑战。在这里,我们分析了嫦娥五号月球土壤样本,发现多环芳烃浓度为5.0 - 9.2微克/克(平均:7.4±1.4微克/克)。它们的芳香结构高度缩合,类似于约4纳米的石墨烯片,且与陆地类似物(如木炭、烟灰和干酪根)不同。虽然陨石撞击是最可能的来源,但嫦娥五号月球土壤中多环芳烃的稳定碳同位素组成(δC:-5.0±0.6‰至+3.6±1.3‰)相比陨石中的碳更富集。这种富集表明在陨石撞击过程中有一个从头形成机制,涉及将δC更富集的非芳香族有机物转化为多环芳烃。这一过程可能在月球风化层的碳积累中起重要作用,因为与较小的有机分子(如氨基酸)相比,生成的多环芳烃更稳定且抗降解,而较小的有机分子在撞击事件中大多被破坏。