Hessenauer Pauline, Feau Nicolas, Heinzelmann Renate, Hamelin Richard C
Département des Sciences du bois et de la Forêt, Faculté de Foresterie, Géographie et Géomatique, Université Laval, Québec, QC, Canada.
Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada.
Genome Biol Evol. 2025 Apr 30;17(5). doi: 10.1093/gbe/evaf069.
Climate significantly influences the distribution, composition, and diversity of fungal communities, impacting the growth, spread, and virulence of fungal forest pathogens. This study employs advanced landscape genomics methods to explore the genomic adaptations of three major fungal pathogens: Those responsible for Dutch elm disease, dothistroma needle blight, and Swiss needle cast. Our findings reveal that precipitation and humidity are primary drivers of adaptation in these species. We use these insights to forecast potential adaptations under future climate scenarios (genomic offset) and identify specific genes and pathways associated with climate responses in each pathogen. Notably, we detect a convergence in moisture adaptation across these distantly related species, particularly in genes related to the cytoskeleton and transporters. This study enhances our understanding of fungal pathogen evolution in response to climate change, offering crucial insights for forest disease management.
气候显著影响真菌群落的分布、组成和多样性,影响真菌森林病原体的生长、传播和毒力。本研究采用先进的景观基因组学方法,探索三种主要真菌病原体的基因组适应性:导致荷兰榆树病、松针散斑病和瑞士针叶枯病的病原体。我们的研究结果表明,降水和湿度是这些物种适应性的主要驱动因素。我们利用这些见解预测未来气候情景下的潜在适应性(基因组偏移),并确定每种病原体中与气候响应相关的特定基因和途径。值得注意的是,我们在这些远缘物种中检测到水分适应性的趋同,特别是在与细胞骨架和转运蛋白相关的基因中。这项研究增进了我们对真菌病原体响应气候变化进化的理解,为森林病害管理提供了关键见解。