Suppr超能文献

“基因组易损性”的解读问题源于局部适应和适应不良中的概念问题。

Interpretation issues with "genomic vulnerability" arise from conceptual issues in local adaptation and maladaptation.

作者信息

Lotterhos Katie E

机构信息

Northeastern University Marine Science Center, Nahant, MA, United States.

出版信息

Evol Lett. 2024 Feb 8;8(3):331-339. doi: 10.1093/evlett/qrae004. eCollection 2024 Jun.

Abstract

As climate change causes the environment to shift away from the local optimum that populations have adapted to, fitness declines are predicted to occur. Recently, methods known as (GOs) have become a popular tool to predict population responses to climate change from landscape genomic data. Populations with a high GO have been interpreted to have a high "genomic vulnerability" to climate change. GOs are often implicitly interpreted as a fitness offset, or a change in fitness of an individual or population in a new environment compared to a reference. However, there are several different types of fitness offset that can be calculated, and the appropriate choice depends on the management goals. This study uses hypothetical and empirical data to explore situations in which different types of fitness offsets may or may not be correlated with each other or with a GO. The examples reveal that even when GOs predict fitness offsets in a common garden experiment, this does not necessarily validate their ability to predict fitness offsets to environmental change. Conceptual examples are also used to show how a large GO can arise under a positive fitness offset, and thus cannot be interpreted as a population vulnerability. These issues can be resolved with robust validation experiments that can evaluate which fitness offsets are correlated with GOs.

摘要

随着气候变化导致环境偏离种群所适应的当地最佳状态,预计适应性将会下降。最近,一种被称为基因组偏移(GOs)的方法已成为从景观基因组数据预测种群对气候变化反应的常用工具。具有高基因组偏移的种群被解读为对气候变化具有高“基因组脆弱性”。基因组偏移通常被隐含地解释为适应性补偿,即与参考环境相比,个体或种群在新环境中的适应性变化。然而,可以计算出几种不同类型的适应性补偿,合适的选择取决于管理目标。本研究使用假设数据和实证数据来探索不同类型的适应性补偿可能相互关联或与基因组偏移相关或不相关的情况。这些例子表明,即使基因组偏移在共同花园实验中预测了适应性补偿,这也不一定能验证它们预测对环境变化的适应性补偿的能力。概念性例子还用于展示在正适应性补偿下如何出现大的基因组偏移,因此不能将其解释为种群脆弱性。这些问题可以通过强大的验证实验来解决,这些实验可以评估哪些适应性补偿与基因组偏移相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e05e/11134465/ca457ce54007/qrae004_fig1.jpg

相似文献

1
Interpretation issues with "genomic vulnerability" arise from conceptual issues in local adaptation and maladaptation.
Evol Lett. 2024 Feb 8;8(3):331-339. doi: 10.1093/evlett/qrae004. eCollection 2024 Jun.
2
Experimental support for genomic prediction of climate maladaptation using the machine learning approach Gradient Forests.
Mol Ecol Resour. 2021 Nov;21(8):2749-2765. doi: 10.1111/1755-0998.13374. Epub 2021 Mar 22.
3
Seeing the forest for the trees: Assessing genetic offset predictions from gradient forest.
Evol Appl. 2022 Feb 25;15(3):403-416. doi: 10.1111/eva.13354. eCollection 2022 Mar.
4
A Quantitative Theory for Genomic Offset Statistics.
Mol Biol Evol. 2023 Jun 1;40(6). doi: 10.1093/molbev/msad140.
5
Sampling effect in predicting the evolutionary response of populations to climate change.
Mol Ecol Resour. 2025 Jul;25(5):e13828. doi: 10.1111/1755-0998.13828. Epub 2023 Jun 30.
6
Climate adaptation and vulnerability of foundation species in a global change hotspot.
Mol Ecol. 2023 Apr;32(8):1990-2004. doi: 10.1111/mec.16848. Epub 2023 Jan 24.
7
Risk of genetic maladaptation due to climate change in three major European tree species.
Glob Chang Biol. 2017 Dec;23(12):5358-5371. doi: 10.1111/gcb.13802. Epub 2017 Aug 10.
9
How useful are genomic data for predicting maladaptation to future climate?
Glob Chang Biol. 2024 Apr;30(4):e17227. doi: 10.1111/gcb.17227.
10
The accuracy of predicting maladaptation to new environments with genomic data.
Mol Ecol Resour. 2025 May;25(4):e14008. doi: 10.1111/1755-0998.14008. Epub 2024 Aug 30.

引用本文的文献

1
Application of Genomic Offsets to Inform Freshwater Fisheries Management Under Climate Change.
Evol Appl. 2025 Aug 27;18(8):e70149. doi: 10.1111/eva.70149. eCollection 2025 Aug.
2
Range-wide climate risk and adaptive potential in a cold-water fish species.
Nat Commun. 2025 Aug 13;16(1):7514. doi: 10.1038/s41467-025-62811-w.
5
Climate-Associated Genetic Variation and Projected Genetic Offsets for D. Don Under Future Climate Scenarios.
Evol Appl. 2025 Feb 6;18(2):e70077. doi: 10.1111/eva.70077. eCollection 2025 Feb.
6
Historic rewiring of grass flowering time pathways and implications for crop improvement under climate change.
New Phytol. 2025 Mar;245(5):1864-1878. doi: 10.1111/nph.20375. Epub 2024 Dec 26.
10

本文引用的文献

1
How useful are genomic data for predicting maladaptation to future climate?
Glob Chang Biol. 2024 Apr;30(4):e17227. doi: 10.1111/gcb.17227.
2
A Quantitative Theory for Genomic Offset Statistics.
Mol Biol Evol. 2023 Jun 1;40(6). doi: 10.1093/molbev/msad140.
5
Seeing the forest for the trees: Assessing genetic offset predictions from gradient forest.
Evol Appl. 2022 Feb 25;15(3):403-416. doi: 10.1111/eva.13354. eCollection 2022 Mar.
6
Novel and disappearing climates in the global surface ocean from 1800 to 2100.
Sci Rep. 2021 Aug 26;11(1):15535. doi: 10.1038/s41598-021-94872-4.
7
Prospects and limitations of genomic offset in conservation management.
Evol Appl. 2021 Mar 18;14(5):1202-1212. doi: 10.1111/eva.13205. eCollection 2021 May.
8
Opportunities and challenges in assessing climate change vulnerability through genomics.
Cell. 2021 Mar 18;184(6):1420-1425. doi: 10.1016/j.cell.2021.02.006.
9
Experimental support for genomic prediction of climate maladaptation using the machine learning approach Gradient Forests.
Mol Ecol Resour. 2021 Nov;21(8):2749-2765. doi: 10.1111/1755-0998.13374. Epub 2021 Mar 22.
10
LEA 3: Factor models in population genetics and ecological genomics with R.
Mol Ecol Resour. 2021 Nov;21(8):2738-2748. doi: 10.1111/1755-0998.13366. Epub 2021 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验