Suppr超能文献

真菌病原体松针散斑壳菌在其对裸子植物宿主辐射松的整个感染周期中的全基因组基因表达动态。

Genome-wide gene expression dynamics of the fungal pathogen Dothistroma septosporum throughout its infection cycle of the gymnosperm host Pinus radiata.

作者信息

Bradshaw Rosie E, Guo Yanan, Sim Andre D, Kabir M Shahjahan, Chettri Pranav, Ozturk Ibrahim K, Hunziker Lukas, Ganley Rebecca J, Cox Murray P

机构信息

Bio-Protection Research Centre, Institute of Fundamental Sciences, Massey University, Palmerston North, 4474, New Zealand.

Scion, NZ Forest Research Institute Ltd, Rotorua, 3010, New Zealand.

出版信息

Mol Plant Pathol. 2016 Feb;17(2):210-24. doi: 10.1111/mpp.12273. Epub 2015 Jun 2.

Abstract

We present genome-wide gene expression patterns as a time series through the infection cycle of the fungal pine needle blight pathogen, Dothistroma septosporum, as it invades its gymnosperm host, Pinus radiata. We determined the molecular changes at three stages of the disease cycle: epiphytic/biotrophic (early), initial necrosis (mid) and mature sporulating lesion (late). Over 1.7 billion combined plant and fungal reads were sequenced to obtain 3.2 million fungal-specific reads, which comprised as little as 0.1% of the sample reads early in infection. This enriched dataset shows that the initial biotrophic stage is characterized by the up-regulation of genes encoding fungal cell wall-modifying enzymes and signalling proteins. Later necrotrophic stages show the up-regulation of genes for secondary metabolism, putative effectors, oxidoreductases, transporters and starch degradation. This in-depth through-time transcriptomic study provides our first snapshot of the gene expression dynamics that characterize infection by this fungal pathogen in its gymnosperm host.

摘要

我们展示了全基因组范围的基因表达模式,将其作为一个时间序列,贯穿真菌性松针枯病菌(Dothistroma septosporum)侵染其裸子植物宿主辐射松的感染周期。我们确定了疾病周期三个阶段的分子变化:附生/活体营养阶段(早期)、初期坏死阶段(中期)和成熟产孢病斑阶段(后期)。对超过17亿条植物和真菌的混合读数进行了测序,以获得320万条真菌特异性读数,在感染早期,这些读数仅占样本读数的0.1%。这个经过富集的数据集表明,初始的活体营养阶段的特征是编码真菌细胞壁修饰酶和信号蛋白的基因上调。随后的坏死营养阶段则显示出参与次生代谢、假定效应子、氧化还原酶、转运蛋白和淀粉降解的基因上调。这项深入的随时间变化的转录组学研究为这种真菌病原体在其裸子植物宿主中的感染所特有的基因表达动态提供了首张快照。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dc7/6638405/c87d6b124a82/MPP-17-210-g001.jpg

相似文献

2
DsEcp2-1 is a polymorphic effector that restricts growth of Dothistroma septosporum in pine.
Fungal Genet Biol. 2020 Feb;135:103300. doi: 10.1016/j.fgb.2019.103300. Epub 2019 Nov 12.
3
The veA gene of the pine needle pathogen Dothistroma septosporum regulates sporulation and secondary metabolism.
Fungal Genet Biol. 2012 Feb;49(2):141-51. doi: 10.1016/j.fgb.2011.11.009. Epub 2011 Dec 29.
4
Comparative Gene Expression Analysis Reveals Mechanism of Response to the Fungal Pathogen .
Mol Plant Microbe Interact. 2021 Apr;34(4):397-409. doi: 10.1094/MPMI-10-20-0282-R. Epub 2021 Mar 26.
6
Genetics of dothistromin biosynthesis of Dothistroma septosporum: an update.
Toxins (Basel). 2010 Nov;2(11):2680-98. doi: 10.3390/toxins2112680. Epub 2010 Nov 5.
7
Evolutionary relics dominate the small number of secondary metabolism genes in the hemibiotrophic fungus Dothistroma septosporum.
Fungal Biol. 2019 May;123(5):397-407. doi: 10.1016/j.funbio.2019.02.006. Epub 2019 Feb 27.
8
LaeA negatively regulates dothistromin production in the pine needle pathogen Dothistroma septosporum.
Fungal Genet Biol. 2016 Dec;97:24-32. doi: 10.1016/j.fgb.2016.11.001. Epub 2016 Nov 3.
9
Evolution of polyketide synthesis in a Dothideomycete forest pathogen.
Fungal Genet Biol. 2017 Sep;106:42-50. doi: 10.1016/j.fgb.2017.07.001. Epub 2017 Jul 6.

引用本文的文献

1
Foliar Pine Pathogens From Different Kingdoms Share Defence-Eliciting Effector Proteins.
Mol Plant Pathol. 2025 Mar;26(3):e70065. doi: 10.1111/mpp.70065.
4
A broadly conserved fungal alcohol oxidase (AOX) facilitates fungal invasion of plants.
Mol Plant Pathol. 2023 Jan;24(1):28-43. doi: 10.1111/mpp.13274. Epub 2022 Oct 17.
5
Characterization of two conserved cell death elicitor families from the Dothideomycete fungal pathogens and (syn. ).
Front Microbiol. 2022 Sep 8;13:964851. doi: 10.3389/fmicb.2022.964851. eCollection 2022.
6
Targeted Gene Mutations in the Forest Pathogen Using CRISPR/Cas9.
Plants (Basel). 2022 Apr 8;11(8):1016. doi: 10.3390/plants11081016.
7
Biosynthesis of Rubellins in -Genetic Basis and Pathway Proposition.
Int J Mol Sci. 2022 Mar 23;23(7):3475. doi: 10.3390/ijms23073475.
9
Dual RNA-Sequencing Analysis of Resistant () and Susceptible () Hosts during Challenge.
Int J Mol Sci. 2021 May 15;22(10):5231. doi: 10.3390/ijms22105231.

本文引用的文献

2
Lectin domains at the frontiers of plant defense.
Front Plant Sci. 2014 Aug 13;5:397. doi: 10.3389/fpls.2014.00397. eCollection 2014.
4
Duplications and losses in gene families of rust pathogens highlight putative effectors.
Front Plant Sci. 2014 Jun 26;5:299. doi: 10.3389/fpls.2014.00299. eCollection 2014.
5
Filamentous pathogen effector functions: of pathogens, hosts and microbiomes.
Curr Opin Plant Biol. 2014 Aug;20:96-103. doi: 10.1016/j.pbi.2014.05.001. Epub 2014 May 28.
6
Sequencing and assembly of the 22-gb loblolly pine genome.
Genetics. 2014 Mar;196(3):875-90. doi: 10.1534/genetics.113.159715.
7
Epigenetic control of effector gene expression in the plant pathogenic fungus Leptosphaeria maculans.
PLoS Genet. 2014 Mar 6;10(3):e1004227. doi: 10.1371/journal.pgen.1004227. eCollection 2014 Mar.
8
Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens.
Mol Plant Microbe Interact. 2014 Mar;27(3):196-206. doi: 10.1094/MPMI-10-13-0313-IA.
9
The carbohydrate-active enzymes database (CAZy) in 2013.
Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5. doi: 10.1093/nar/gkt1178. Epub 2013 Nov 21.
10
Pivoting the plant immune system from dissection to deployment.
Science. 2013 Aug 16;341(6147):746-51. doi: 10.1126/science.1236011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验