Suppr超能文献

研究茶中儿茶素与铜离子的协同抗氧化行为:配位-活化效应机制

Investigating the synergistic antioxidant behavior of catechin and copper ion in tea: The mechanism of coordination-activation effect.

作者信息

Jia Guipeng, Ouyang Tingting, Wang Yanyan, Huang Ximing

机构信息

School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China.

出版信息

Food Chem X. 2025 Apr 4;27:102440. doi: 10.1016/j.fochx.2025.102440. eCollection 2025 Apr.

Abstract

Tea is a rich source of bioactive compounds, with catechin recognized as key antioxidants. However, the influence of metal ions on the antioxidant activity of catechin remains further exploration. In this study, the interaction between catechin and Cu was well explored and a mechanism of coordination-activation effect was successfully proposed. It was demonstrated that moderate concentrations of Cu could significantly enhanced the antioxidant capacity of catechin. Structural analyses revealed the formation of coordination complexes between Cu and catechin, which underlay this enhanced antioxidant activity. Additionally, density functional theory calculations indicated that complex formation could reduce the HOMO-LUMO energy gap obviously, thereby contributing to enhanced antioxidant capacity. Our findings offer new insights into the modulation of antioxidant activity by metal ions. This research not only deepens understanding the bioactivity of tea but also suggests potential strategies for optimizing tea-based products, advancing the broader field of antioxidant research.

摘要

茶是生物活性化合物的丰富来源,儿茶素被认为是关键的抗氧化剂。然而,金属离子对儿茶素抗氧化活性的影响仍有待进一步探索。在本研究中,对儿茶素与铜之间的相互作用进行了充分探索,并成功提出了配位激活效应机制。结果表明,适量浓度的铜能显著提高儿茶素的抗氧化能力。结构分析揭示了铜与儿茶素之间形成了配位络合物,这是抗氧化活性增强的基础。此外,密度泛函理论计算表明,络合物的形成可明显降低最高占据分子轨道-最低未占据分子轨道(HOMO-LUMO)的能隙,从而有助于提高抗氧化能力。我们的研究结果为金属离子对抗氧化活性的调节提供了新的见解。这项研究不仅加深了对茶生物活性的理解,还为优化茶基产品提出了潜在策略,推动了抗氧化研究这一更广泛领域的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2458/12001106/aab4a911b3c9/gr1.jpg

相似文献

1
Investigating the synergistic antioxidant behavior of catechin and copper ion in tea: The mechanism of coordination-activation effect.
Food Chem X. 2025 Apr 4;27:102440. doi: 10.1016/j.fochx.2025.102440. eCollection 2025 Apr.
2
Intermolecular hydrogen bonds between catechin and theanine in tea: slow release of the antioxidant capacity by a synergetic effect.
RSC Adv. 2022 Aug 1;12(33):21135-21144. doi: 10.1039/d2ra03692d. eCollection 2022 Jul 21.
3
Proton-coupled electron transfer of catechin in tea wine: the enhanced mechanism of anti-oxidative capacity.
RSC Adv. 2021 Dec 15;11(63):39985-39993. doi: 10.1039/d1ra07769d. eCollection 2021 Dec 13.
5
Total polyphenols, catechin profiles and antioxidant activity of tea products from purple leaf coloured tea cultivars.
Food Chem. 2013 Feb 15;136(3-4):1405-13. doi: 10.1016/j.foodchem.2012.09.066. Epub 2012 Sep 28.
7
Catechin Composition, Phenolic Content, and Antioxidant Properties of Commercially-Available Bagged, Gunpowder, and Matcha Green Teas.
Plant Foods Hum Nutr. 2023 Dec;78(4):662-669. doi: 10.1007/s11130-023-01121-2. Epub 2023 Nov 3.
9
Antioxidant protective effect of flavonoids on linoleic acid peroxidation induced by copper(II)/ascorbic acid system.
Chem Phys Lipids. 2011 Nov;164(8):732-9. doi: 10.1016/j.chemphyslip.2011.09.001. Epub 2011 Sep 9.

本文引用的文献

1
Protective effects and molecular mechanisms of tea polyphenols on cardiovascular diseases.
Front Nutr. 2023 Jun 28;10:1202378. doi: 10.3389/fnut.2023.1202378. eCollection 2023.
2
Mechanistic DFT Study of 1,3-Dipolar Cycloadditions of Azides with Guanidine.
Molecules. 2023 Mar 3;28(5):2342. doi: 10.3390/molecules28052342.
3
DFT calculations in solution systems: solvation energy, dispersion energy and entropy.
Phys Chem Chem Phys. 2023 Jan 4;25(2):913-931. doi: 10.1039/d2cp04720a.
4
Fabrication and characterization of gelatin-EGCG-pectin ternary complex: formation mechanism, emulsion stability, and structure.
J Sci Food Agric. 2023 Feb;103(3):1442-1453. doi: 10.1002/jsfa.12240. Epub 2022 Oct 10.
5
Proton-coupled electron transfer of catechin in tea wine: the enhanced mechanism of anti-oxidative capacity.
RSC Adv. 2021 Dec 15;11(63):39985-39993. doi: 10.1039/d1ra07769d. eCollection 2021 Dec 13.
6
Trends in Coffee and Tea Consumption during the COVID-19 Pandemic.
Foods. 2021 Oct 15;10(10):2458. doi: 10.3390/foods10102458.
7
Updated review on green tea polyphenol epigallocatechin-3-gallate as a cancer epigenetic regulator.
Semin Cancer Biol. 2022 Aug;83:335-352. doi: 10.1016/j.semcancer.2020.11.018. Epub 2021 Jan 13.
8
Green tea and cancer and cardiometabolic diseases: a review of the current epidemiological evidence.
Eur J Clin Nutr. 2021 Jun;75(6):865-876. doi: 10.1038/s41430-020-00710-7. Epub 2020 Aug 20.
9
Activation of Oxygen and Hydrogen Peroxide by Copper(II) Coupled with Hydroxylamine for Oxidation of Organic Contaminants.
Environ Sci Technol. 2016 Aug 2;50(15):8231-8. doi: 10.1021/acs.est.6b02067. Epub 2016 Jul 21.
10
Effects of metal ions (Cu²⁺, Fe²⁺ and Fe³⁺) on HPLC analysis of catechins.
Food Chem. 2012 Jul 15;133(2):518-25. doi: 10.1016/j.foodchem.2012.01.018. Epub 2012 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验