Suppr超能文献

为保护全球南方地区公众健康而建立的应对微生物水污染的模型解决方案。

Modeling solutions for microbial water contamination in the global south for public health protection.

作者信息

Izah Sylvester Chibueze, Ogwu Matthew Chidozie

机构信息

Department of Community Medicine, Faculty of Clinical Sciences, Bayelsa Medical University, Yenagoa, Nigeria.

Goodnight Family Department of Sustainable Development, Living Learning Center, Appalachian State University, Boone, NC, United States.

出版信息

Front Microbiol. 2025 Apr 2;16:1504829. doi: 10.3389/fmicb.2025.1504829. eCollection 2025.

Abstract

Microbial contamination of water sources is a pressing global challenge, disproportionately affecting developing regions with inadequate infrastructure and limited access to safe drinking water. In the Global South, waterborne pathogens such as bacteria, viruses, protozoa, and helminths contribute to diseases like cholera, dysentery, and typhoid fever, resulting in severe public health burdens. Predictive modeling emerges as a pivotal tool in addressing these challenges, offering data-driven insights to anticipate contamination events and optimize mitigation strategies. This review highlights the application of predictive modeling techniques-including machine learning, hydrological simulations, and quantitative microbial risk assessment -to identify contamination hotspots, forecast pathogen dynamics, and inform water resource allocation in the Global South. Predictive models enable targeted actions to improve water safety and lower the prevalence of waterborne diseases by combining environmental, socioeconomic, and climatic factors. Water resources in the Global South are increasingly vulnerability to microbial contamination, and the challenge is exacerbated by rapid urbanization, climate variability, and insufficient sanitation infrastructure. This review underscores the importance of region-specific modeling approaches. Case studies from sub-Saharan Africa and South Asia demonstrated the efficacy of predictive modeling tools in guiding public health actions connected to environmental matrices, from prioritizing water treatment efforts to implementing early-warning systems during extreme weather events. Furthermore, the review explores integrating advanced technologies, such as remote sensing and artificial intelligence, into predictive frameworks, highlighting their potential to improve accuracy and scalability in resource-constrained settings. Increased funding for data collecting, predictive modeling tools, and cross-sectoral cooperation between local communities, non-governmental organizations, and governments are all recommended in the review. Such efforts are critical for developing resilient water systems capable of withstanding environmental stressors and ensuring sustainable access to safe drinking water. By leveraging predictive modeling as a core component of water management strategies, stakeholders can address microbial contamination challenges effectively, safeguard public health, and contribute to achieving the United Nations' Sustainable Development Goals.

摘要

水源的微生物污染是一个紧迫的全球性挑战,对基础设施不足且安全饮用水获取途径有限的发展中地区影响尤为严重。在全球南方,细菌、病毒、原生动物和蠕虫等水源性病原体导致霍乱、痢疾和伤寒热等疾病,造成严重的公共卫生负担。预测建模成为应对这些挑战的关键工具,提供数据驱动的见解以预测污染事件并优化缓解策略。本综述强调了预测建模技术的应用,包括机器学习、水文模拟和定量微生物风险评估,以识别全球南方的污染热点、预测病原体动态并为水资源分配提供信息。预测模型通过结合环境、社会经济和气候因素,能够采取有针对性的行动来改善水安全并降低水源性疾病的流行率。全球南方的水资源越来越容易受到微生物污染,而快速城市化、气候变化和卫生基础设施不足加剧了这一挑战。本综述强调了针对特定区域的建模方法的重要性。撒哈拉以南非洲和南亚的案例研究证明了预测建模工具在指导与环境矩阵相关的公共卫生行动方面的有效性,从优先进行水处理工作到在极端天气事件期间实施预警系统。此外,该综述探讨了将遥感和人工智能等先进技术整合到预测框架中,强调了它们在资源受限环境中提高准确性和可扩展性的潜力。综述建议增加对数据收集、预测建模工具的资金投入,以及地方社区、非政府组织和政府之间的跨部门合作。这些努力对于开发能够抵御环境压力并确保可持续获取安全饮用水的有弹性的水系统至关重要。通过将预测建模作为水管理策略的核心组成部分,利益相关者可以有效应对微生物污染挑战,保障公众健康,并为实现联合国可持续发展目标做出贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4061/12001804/2e427cc3c373/fmicb-16-1504829-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验