Suppr超能文献

TSCMamba:用于时间序列分类的Mamba与多视图学习相结合

TSCMamba: Mamba Meets Multi-View Learning for Time Series Classification.

作者信息

Ahamed Md Atik, Cheng Qiang

机构信息

Department of Computer Science, University of Kentucky, Lexington, KY, USA.

Institute for Biomedical Informatics, University of Kentucky, Lexington, KY, USA.

出版信息

Inf Fusion. 2025 Aug;120. doi: 10.1016/j.inffus.2025.103079. Epub 2025 Mar 20.

Abstract

Multivariate time series classification (TSC) is critical for various applications in fields such as healthcare and finance. While various approaches for TSC have been explored, important properties of time series, such as shift equivariance and inversion invariance, are largely underexplored by existing works. To fill this gap, we propose a novel multi-view approach to capture patterns with properties like shift equivariance. Our method integrates diverse features, including spectral, temporal, local, and global features, to obtain rich, complementary contexts for TSC. We use continuous wavelet transform to capture time-frequency features that remain consistent even when the input is shifted in time. These features are fused with temporal convolutional or multilayer perceptron features to provide complex local and global contextual information. We utilize the Mamba state space model for efficient and scalable sequence modeling and capturing long-range dependencies in time series. Moreover, we introduce a new scanning scheme for Mamba, called tango scanning, to effectively model sequence relationships and leverage inversion invariance, thereby enhancing our model's generalization and robustness. Experiments on two sets of benchmark datasets (10+20 datasets) demonstrate our approach's effectiveness, achieving average accuracy improvements of 4.01-6.45% and 7.93% respectively, over leading TSC models such as TimesNet and TSLANet. The code is available at: https://drive.google.com/file/d/1fScmALgreb_sE9_P2kIsQCmt9SNxp7GP/view?usp=sharing.

摘要

多变量时间序列分类(TSC)对于医疗保健和金融等领域的各种应用至关重要。虽然已经探索了各种TSC方法,但时间序列的重要属性,如平移不变性和反转不变性,在现有工作中很大程度上未得到充分研究。为了填补这一空白,我们提出了一种新颖的多视图方法来捕获具有平移不变性等属性的模式。我们的方法整合了多种特征,包括频谱、时间、局部和全局特征,以获得丰富、互补的上下文用于TSC。我们使用连续小波变换来捕获即使输入在时间上发生偏移时仍保持一致的时频特征。这些特征与时间卷积或多层感知器特征融合,以提供复杂的局部和全局上下文信息。我们利用曼巴状态空间模型进行高效且可扩展的序列建模,并捕获时间序列中的长程依赖关系。此外,我们为曼巴引入了一种新的扫描方案,称为探戈扫描,以有效地建模序列关系并利用反转不变性,从而提高我们模型的泛化能力和鲁棒性。在两组基准数据集(10 + 20个数据集)上的实验证明了我们方法的有效性,分别比TimesNet和TSLANet等领先的TSC模型平均准确率提高了4.01 - 6.45%和7.93%。代码可在以下链接获取:https://drive.google.com/file/d/1fScmALgreb_sE9_P2kIsQCmt9SNxp7GP/view?usp=sharing

相似文献

本文引用的文献

7
A database of Caenorhabditis elegans behavioral phenotypes.秀丽隐杆线虫行为表型数据库。
Nat Methods. 2013 Sep;10(9):877-9. doi: 10.1038/nmeth.2560. Epub 2013 Jul 14.
8
Representation learning: a review and new perspectives.表示学习:综述与新视角。
IEEE Trans Pattern Anal Mach Intell. 2013 Aug;35(8):1798-828. doi: 10.1109/TPAMI.2013.50.
10
A spelling device for the paralysed.一种为瘫痪者设计的拼写工具。
Nature. 1999 Mar 25;398(6725):297-8. doi: 10.1038/18581.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验