Suppr超能文献

SepsisCalc:通过动态时间图构建将临床计算器集成到早期脓毒症预测中。

SepsisCalc: Integrating Clinical Calculators into Early Sepsis Prediction via Dynamic Temporal Graph Construction.

作者信息

Yin Changchang, Fu Shihan, Yao Bingsheng, Pham Thai-Hoang, Cao Weidan, Wang Dakuo, Caterino Jeffrey, Zhang Ping

机构信息

The Ohio State University, Columbus, Ohio, USA.

Northestern University, Boston, Massachusetts, USA.

出版信息

KDD. 2025 Aug;2025(v1):2779-2790. doi: 10.1145/3690624.3709402. Epub 2025 Jul 20.

Abstract

Sepsis is an organ dysfunction caused by a deregulated immune response to an infection. Early sepsis prediction and identification allow for timely intervention, leading to improved clinical outcomes. Clinical calculators (., the six-organ dysfunction assessment of SOFA in Figure 1) play a vital role in sepsis identification within clinicians' workflow, providing evidence-based risk assessments essential for sepsis diagnosis. However, artificial intelligence (AI) sepsis prediction models typically generate a single sepsis risk score without incorporating clinical calculators for assessing organ dysfunctions, making the models less convincing and transparent to clinicians. To bridge the gap, we propose to mimic clinicians' workflow with a novel framework SepsisCalc to integrate clinical calculators into the predictive model, yielding a clinically transparent and precise model for utilization in clinical settings. Practically, clinical calculators usually combine information from multiple component variables in Electronic Health Records (EHR), and might not be applicable when the variables are (partially) missing. We mitigate this issue by representing EHRs as temporal graphs and integrating a learning module to dynamically add the accurately estimated calculator to the graphs. Experimental results on real-world datasets show that the proposed model outperforms state-of-the-art methods on sepsis prediction tasks. Moreover, we developed a system to identify organ dysfunctions and potential sepsis risks, providing a human-AI interaction tool for deployment, which can help clinicians understand the prediction outputs and prepare timely interventions for the corresponding dysfunctions, paving the way for actionable clinical decision-making support for early intervention.

摘要

脓毒症是由对感染的免疫反应失调引起的器官功能障碍。早期脓毒症预测和识别能够实现及时干预,从而改善临床结果。临床计算器(例如图1中的序贯器官衰竭评估(SOFA)的六器官功能障碍评估)在临床医生的工作流程中对脓毒症识别起着至关重要的作用,提供脓毒症诊断所需的循证风险评估。然而,人工智能(AI)脓毒症预测模型通常生成单一的脓毒症风险评分,而没有纳入用于评估器官功能障碍的临床计算器,这使得模型对临床医生来说缺乏说服力且不够透明。为了弥合这一差距,我们建议用一个新颖的框架SepsisCalc模仿临床医生的工作流程,将临床计算器集成到预测模型中,从而产生一个临床透明且精确的模型以供临床环境使用。实际上,临床计算器通常会整合电子健康记录(EHR)中多个组成变量的信息,并且当变量(部分)缺失时可能不适用。我们通过将电子健康记录表示为时间图并集成一个学习模块来动态地将准确估计的计算器添加到图中,从而缓解了这个问题。在真实世界数据集上的实验结果表明,所提出的模型在脓毒症预测任务上优于现有方法。此外,我们开发了一个系统来识别器官功能障碍和潜在的脓毒症风险,提供了一个用于部署的人机交互工具,这可以帮助临床医生理解预测输出并为相应的功能障碍及时准备干预措施,为早期干预的可操作临床决策支持铺平道路。

相似文献

1
SepsisCalc: Integrating Clinical Calculators into Early Sepsis Prediction via Dynamic Temporal Graph Construction.
KDD. 2025 Aug;2025(v1):2779-2790. doi: 10.1145/3690624.3709402. Epub 2025 Jul 20.
5
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
6
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?
Clin Orthop Relat Res. 2024 Sep 1;482(9):1710-1721. doi: 10.1097/CORR.0000000000003030. Epub 2024 Mar 22.
8
Automated monitoring compared to standard care for the early detection of sepsis in critically ill patients.
Cochrane Database Syst Rev. 2018 Jun 25;6(6):CD012404. doi: 10.1002/14651858.CD012404.pub2.

本文引用的文献

1
SIRS, SOFA, qSOFA, and NEWS in the diagnosis of sepsis and prediction of adverse outcomes: a systematic review and meta-analysis.
Expert Rev Anti Infect Ther. 2023 Jul-Dec;21(8):891-900. doi: 10.1080/14787210.2023.2237192. Epub 2023 Jul 18.
2
Early prediction of sepsis using double fusion of deep features and handcrafted features.
Appl Intell (Dordr). 2023 Jan 17:1-17. doi: 10.1007/s10489-022-04425-z.
3
A survival model generalized to regression learning algorithms.
Nat Comput Sci. 2021 Jun;1(6):433-440. doi: 10.1038/s43588-021-00083-2. Epub 2021 Jun 21.
4
A hybrid method of recurrent neural network and graph neural network for next-period prescription prediction.
Int J Mach Learn Cybern. 2020;11(12):2849-2856. doi: 10.1007/s13042-020-01155-x. Epub 2020 Jun 23.
5
GRAM: Graph-based Attention Model for Healthcare Representation Learning.
KDD. 2017 Aug;2017:787-795. doi: 10.1145/3097983.3098126.
6
An interpretable deep-learning model for early prediction of sepsis in the emergency department.
Patterns (N Y). 2021 Jan 19;2(2):100196. doi: 10.1016/j.patter.2020.100196. eCollection 2021 Feb 12.
7
An interpretable risk prediction model for healthcare with pattern attention.
BMC Med Inform Decis Mak. 2020 Dec 30;20(Suppl 11):307. doi: 10.1186/s12911-020-01331-7.
8
Early Prediction of Sepsis From Clinical Data: The PhysioNet/Computing in Cardiology Challenge 2019.
Crit Care Med. 2020 Feb;48(2):210-217. doi: 10.1097/CCM.0000000000004145.
9
Medical calculators: Prevalence, and barriers to use.
Comput Methods Programs Biomed. 2019 Oct;179:105002. doi: 10.1016/j.cmpb.2019.105002. Epub 2019 Jul 30.
10
Prediction of sepsis patients using machine learning approach: A meta-analysis.
Comput Methods Programs Biomed. 2019 Mar;170:1-9. doi: 10.1016/j.cmpb.2018.12.027. Epub 2018 Dec 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验