Suppr超能文献

一种用于下期处方预测的递归神经网络与图神经网络混合方法。

A hybrid method of recurrent neural network and graph neural network for next-period prescription prediction.

作者信息

Liu Sicen, Li Tao, Ding Haoyang, Tang Buzhou, Wang Xiaolong, Chen Qingcai, Yan Jun, Zhou Yi

机构信息

Department of Computer Science, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China.

Yidu Cloud (Beijing) Technology Co., Ltd, Beijing, China.

出版信息

Int J Mach Learn Cybern. 2020;11(12):2849-2856. doi: 10.1007/s13042-020-01155-x. Epub 2020 Jun 23.

Abstract

Electronic health records (EHRs) have been widely used to help physicians to make decisions by predicting medical events such as diseases, prescriptions, outcomes, and so on. How to represent patient longitudinal medical data is the key to making these predictions. Recurrent neural network (RNN) is a popular model for patient longitudinal medical data representation from the view of patient status sequences, but it cannot represent complex interactions among different types of medical information, i.e., temporal medical event graphs, which can be represented by graph neural network (GNN). In this paper, we propose a hybrid method of RNN and GNN, called RGNN, for next-period prescription prediction from two views, where RNN is used to represent patient status sequences, and GNN is used to represent temporal medical event graphs. Experiments conducted on the public MIMIC-III ICU data show that the proposed method is effective for next-period prescription prediction, and RNN and GNN are mutually complementary.

摘要

电子健康记录(EHRs)已被广泛用于通过预测疾病、处方、治疗结果等医疗事件来帮助医生做出决策。如何表示患者的纵向医疗数据是进行这些预测的关键。从患者状态序列的角度来看,循环神经网络(RNN)是一种用于表示患者纵向医疗数据的流行模型,但它无法表示不同类型医疗信息之间的复杂交互,即时间医疗事件图,而图神经网络(GNN)可以表示这种交互。在本文中,我们提出了一种RNN和GNN的混合方法,称为RGNN,用于从两个视角进行下期处方预测,其中RNN用于表示患者状态序列,GNN用于表示时间医疗事件图。在公开的MIMIC-III重症监护病房数据上进行的实验表明,所提出的方法对于下期处方预测是有效的,并且RNN和GNN相互补充。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97c0/7308113/1ba0cf899c37/13042_2020_1155_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验