基于深度学习的全乳放疗临床靶区体积分割模型的开发与外部多中心验证
Development and external multicentric validation of a deep learning-based clinical target volume segmentation model for whole-breast radiotherapy.
作者信息
Ubeira-Gabellini Maria Giulia, Palazzo Gabriele, Mori Martina, Tudda Alessia, Rivetti Luciano, Cagni Elisabetta, Castriconi Roberta, Landoni Valeria, Moretti Eugenia, Mazzilli Aldo, Oliviero Caterina, Placidi Lorenzo, Guidasci Giulia Rambaldi, Riani Cecilia, Fodor Andrei, Muzio Nadia Gisella Di, Jeraj Robert, Vecchio Antonella Del, Fiorino Claudio
机构信息
Medical Physics, IRCCS San Raffaele Scientific Institute, Milan, Italy.
University of Ljubljana, Faculty of Mathematics and Physics, Ljubljana, Slovenia.
出版信息
Phys Imaging Radiat Oncol. 2025 Mar 26;34:100749. doi: 10.1016/j.phro.2025.100749. eCollection 2025 Apr.
BACKGROUND AND PURPOSE
In order to optimize the radiotherapy treatment and minimize toxicities, organs-at-risk (OARs) and clinical target volume (CTV) must be segmented. Deep Learning (DL) techniques show significant potential for performing this task effectively. The availability of a large single-institute data sample, combined with additional numerous multi-centric data, makes it possible to develop and validate a reliable CTV segmentation model.
MATERIALS AND METHODS
Planning CT data of 1822 patients were available (861 from a single center for training and 961 from 8 centers for validation). A preprocessing step, aimed at standardizing all the images, followed by a 3D-Unet capable of segmenting both right and left CTVs was implemented. The metrics used to evaluate the performance were the Dice similarity coefficient (DSC), the Hausdorff distance (HD), and its 95th percentile variant (HD_95) and the Average Surface Distance (ASD).
RESULTS
The segmentation model achieved high performance on the validation set (DSC: 0.90; HD: 20.5 mm; HD_95: 10.0 mm; ASD: 2.1 mm; epoch 298). Furthermore, the model predicted smoother contours than the clinical ones along the cranial-caudal axis in both directions. When applied to internal and external data the same metrics demonstrated an overall agreement and model transferability for all but one (Inst 9) center.
CONCLUSION
. A 3D-Unet for CTV segmentation trained on a large single institute cohort consisting of planning CTs and manual segmentations was built and externally validated, reaching high performance.
背景与目的
为了优化放射治疗并将毒性降至最低,必须对危及器官(OARs)和临床靶区(CTV)进行分割。深度学习(DL)技术在有效执行此任务方面显示出巨大潜力。大型单机构数据样本与大量多中心数据的可用性相结合,使得开发和验证可靠的CTV分割模型成为可能。
材料与方法
可获得1822例患者的计划CT数据(861例来自单一中心用于训练,961例来自8个中心用于验证)。实施了一个旨在标准化所有图像的预处理步骤,随后采用了一种能够分割左右CTV的3D-Unet。用于评估性能的指标包括骰子相似系数(DSC)、豪斯多夫距离(HD)及其第95百分位数变体(HD_95)和平均表面距离(ASD)。
结果
分割模型在验证集上取得了高性能(DSC:0.90;HD:20.5毫米;HD_95:10.0毫米;ASD:2.1毫米;第298轮)。此外,该模型在颅尾轴的两个方向上预测的轮廓比临床轮廓更平滑。当应用于内部和外部数据时,除一个中心(机构9)外,相同的指标显示出总体一致性和模型可转移性。
结论
构建了一个基于由计划CT和手动分割组成的大型单机构队列训练的用于CTV分割的3D-Unet,并进行了外部验证,达到了高性能。
相似文献
本文引用的文献
Int J Radiat Oncol Biol Phys. 2024-8-1
Phys Imaging Radiat Oncol. 2023-8-23
Clin Oncol (R Coll Radiol). 2023-6
Tumori. 2022-7