文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度学习的框架,用于分割具有术后前列腺癌放射治疗中估计不确定性的不可见临床靶区。

A deep learning-based framework for segmenting invisible clinical target volumes with estimated uncertainties for post-operative prostate cancer radiotherapy.

机构信息

Medical Artificial Intelligence and Automation Laboratory and Department of Radiation Oncology,University of Texas Southwestern Medical Center, Dallas, Texas, United States.

Medical Artificial Intelligence and Automation Laboratory and Department of Radiation Oncology,University of Texas Southwestern Medical Center, Dallas, Texas, United States.

出版信息

Med Image Anal. 2021 Aug;72:102101. doi: 10.1016/j.media.2021.102101. Epub 2021 May 17.


DOI:10.1016/j.media.2021.102101
PMID:34111573
Abstract

In post-operative radiotherapy for prostate cancer, precisely contouring the clinical target volume (CTV) to be irradiated is challenging, because the cancerous prostate gland has been surgically removed, so the CTV encompasses the microscopic spread of tumor cells, which cannot be visualized in clinical images like computed tomography or magnetic resonance imaging. In current clinical practice, physicians' segment CTVs manually based on their relationship with nearby organs and other clinical information, but this allows large inter-physician variability. Automating post-operative prostate CTV segmentation with traditional image segmentation methods has yielded suboptimal results. We propose using deep learning to accurately segment post-operative prostate CTVs. The model proposed is trained using labels that were clinically approved and used for patient treatment. To segment the CTV, we segment nearby organs first, then use their relationship with the CTV to assist CTV segmentation. To ease the encoding of distance-based features, which are important for learning both the CTV contours' overlap with the surrounding OARs and the distance from their borders, we add distance prediction as an auxiliary task to the CTV network. To make the DL model practical for clinical use, we use Monte Carlo dropout (MCDO) to estimate model uncertainty. Using MCDO, we estimate and visualize the 95% upper and lower confidence bounds for each prediction which informs the physicians of areas that might require correction. The model proposed achieves an average Dice similarity coefficient (DSC) of 0.87 on a holdout test dataset, much better than established methods, such as atlas-based methods (DSC<0.7). The predicted contours agree with physician contours better than medical resident contours do. A reader study showed that the clinical acceptability of the automatically segmented CTV contours is equal to that of approved clinical contours manually drawn by physicians. Our deep learning model can accurately segment CTVs with the help of surrounding organ masks. Because the DL framework can outperform residents, it can be implemented practically in a clinical workflow to generate initial CTV contours or to guide residents in generating these contours for physicians to review and revise. Providing physicians with the 95% confidence bounds could streamline the review process for an efficient clinical workflow as this would enable physicians to concentrate their inspecting and editing efforts on the large uncertain areas.

摘要

在前列腺癌的术后放疗中,精确勾画需要照射的临床靶区(CTV)具有挑战性,因为癌变的前列腺已被手术切除,因此 CTV 包含肿瘤细胞的微观扩散,这些无法在 CT 或磁共振成像等临床图像中可视化。在当前的临床实践中,医生基于 CTV 与附近器官的关系和其他临床信息手动勾画 CTV,但这会导致医生间的差异较大。使用传统的图像分割方法对术后前列腺 CTV 进行自动分割的效果并不理想。我们提出使用深度学习来准确分割术后前列腺 CTV。所提出的模型使用经过临床批准并用于患者治疗的标签进行训练。为了分割 CTV,我们首先分割附近的器官,然后利用它们与 CTV 的关系来辅助 CTV 分割。为了缓解距离特征的编码问题,这些特征对于学习 CTV 轮廓与周围 OAR 的重叠以及与它们边界的距离都很重要,我们将距离预测作为辅助任务添加到 CTV 网络中。为了使 DL 模型适用于临床应用,我们使用蒙特卡罗失活(MCDO)来估计模型不确定性。使用 MCDO,我们估计并可视化每个预测的 95%置信区间的上限和下限,这可以为医生提供可能需要修正的区域的信息。在一个验证数据集上,所提出的模型的平均 Dice 相似系数(DSC)为 0.87,明显优于基于图谱的方法(DSC<0.7)等已有方法。预测的轮廓与医生的轮廓比与住院医生的轮廓更吻合。一项读者研究表明,自动分割的 CTV 轮廓的临床可接受性与医生手动绘制的经批准的临床轮廓相同。我们的深度学习模型可以在周围器官掩模的帮助下准确分割 CTV。由于深度学习框架可以优于住院医生,因此它可以在临床工作流程中实际实施,以生成初始 CTV 轮廓,或指导住院医生生成这些轮廓,以便医生进行审查和修改。为医生提供 95%置信区间可以简化审查过程,提高工作效率,因为这可以使医生将他们的检查和编辑工作集中在不确定度较大的区域。

相似文献

[1]
A deep learning-based framework for segmenting invisible clinical target volumes with estimated uncertainties for post-operative prostate cancer radiotherapy.

Med Image Anal. 2021-8

[2]
Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery.

Radiat Oncol. 2021-2-25

[3]
PSA-Net: Deep learning-based physician style-aware segmentation network for postoperative prostate cancer clinical target volumes.

Artif Intell Med. 2021-11

[4]
Automatic clinical target volume delineation for cervical cancer in CT images using deep learning.

Med Phys. 2021-7

[5]
Implementation of deep learning-based auto-segmentation for radiotherapy planning structures: a workflow study at two cancer centers.

Radiat Oncol. 2021-6-8

[6]
Patient-specific transfer learning for auto-segmentation in adaptive 0.35 T MRgRT of prostate cancer: a bi-centric evaluation.

Med Phys. 2023-3

[7]
An uncertainty-aware deep learning architecture with outlier mitigation for prostate gland segmentation in radiotherapy treatment planning.

Med Phys. 2023-1

[8]
Uncertainty estimation using a 3D probabilistic U-Net for segmentation with small radiotherapy clinical trial datasets.

Comput Med Imaging Graph. 2024-9

[9]
Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning.

Radiother Oncol. 2020-3

[10]
Pretreatment information-aided automatic segmentation for online magnetic resonance imaging-guided prostate radiotherapy.

Med Phys. 2024-2

引用本文的文献

[1]
Impact of deep learning model uncertainty on manual corrections to MRI-based auto-segmentation in prostate cancer radiotherapy.

J Appl Clin Med Phys. 2025-9

[2]
Artificial intelligence in prostate cancer.

Chin Med J (Engl). 2025-8-5

[3]
Prior knowledge of anatomical relationships supports automatic delineation of clinical target volume for cervical cancer.

Sci Rep. 2025-7-4

[4]
Prior guided deep difference meta-learner for fast adaptation to stylized segmentation.

Mach Learn Sci Technol. 2025-6-30

[5]
Artificial intelligence uncertainty quantification in radiotherapy applications - A scoping review.

Radiother Oncol. 2024-12

[6]
Deep learning based clinical target volumes contouring for prostate cancer: Easy and efficient application.

J Appl Clin Med Phys. 2024-10

[7]
Artificial Intelligence Uncertainty Quantification in Radiotherapy Applications - A Scoping Review.

medRxiv. 2024-5-13

[8]
Cardiac substructure delineation in radiation therapy - A state-of-the-art review.

J Med Imaging Radiat Oncol. 2024-12

[9]
Deep learning based automatic segmentation of the Internal Pudendal Artery in definitive radiotherapy treatment planning of localized prostate cancer.

Phys Imaging Radiat Oncol. 2024-4-15

[10]
Review of Deep Learning Based Autosegmentation for Clinical Target Volume: Current Status and Future Directions.

Adv Radiat Oncol. 2024-2-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索