Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
J Appl Clin Med Phys. 2023 Jul;24(7):e13951. doi: 10.1002/acm2.13951. Epub 2023 Mar 15.
Recently, target auto-segmentation techniques based on deep learning (DL) have shown promising results. However, inaccurate target delineation will directly affect the treatment planning dose distribution and the effect of subsequent radiotherapy work. Evaluation based on geometric metrics alone may not be sufficient for target delineation accuracy assessment. The purpose of this paper is to validate the performance of automatic segmentation with dosimetric metrics and try to construct new evaluation geometric metrics to comprehensively understand the dose-response relationship from the perspective of clinical application.
A DL-based target segmentation model was developed by using 186 manual delineation modified radical mastectomy breast cancer cases. The resulting DL model were used to generate alternative target contours in a new set of 48 patients. The Auto-plan was reoptimized to ensure the same optimized parameters as the reference Manual-plan. To assess the dosimetric impact of target auto-segmentation, not only common geometric metrics but also new spatial parameters with distance and relative volume ( ) to target were used. Correlations were performed using Spearman's correlation between segmentation evaluation metrics and dosimetric changes.
Only strong (|R | > 0.6, p < 0.01) or moderate (|R | > 0.4, p < 0.01) Pearson correlation was established between the traditional geometric metric and three dosimetric evaluation indices to target (conformity index, homogeneity index, and mean dose). For organs at risk (OARs), inferior or no significant relationship was found between geometric parameters and dosimetric differences. Furthermore, we found that OARs dose distribution was affected by boundary error of target segmentation instead of distance and to target.
Current geometric metrics could reflect a certain degree of dose effect of target variation. To find target contour variations that do lead to OARs dosimetry changes, clinically oriented metrics that more accurately reflect how segmentation quality affects dosimetry should be constructed.
最近,基于深度学习(DL)的目标自动分割技术显示出了有前景的结果。然而,不准确的目标勾画会直接影响治疗计划剂量分布和后续放射治疗的效果。仅基于几何度量的评估可能不足以评估目标勾画的准确性。本文的目的是通过剂量学度量验证自动分割的性能,并尝试构建新的评估几何度量,从临床应用的角度全面了解剂量-反应关系。
使用 186 例手动勾画改良根治性乳腺癌病例的 DL 目标分割模型。在新的 48 例患者中,使用生成的 DL 模型生成替代目标轮廓。重新优化自动计划,以确保与参考手动计划相同的优化参数。为了评估目标自动分割的剂量学影响,不仅使用了常见的几何度量,还使用了与目标的距离和相对体积( )等新的空间参数。使用 Spearman 相关系数对分割评估指标和剂量变化进行相关性分析。
仅在传统的几何度量与三个目标剂量评估指标(适形指数、均匀性指数和平均剂量)之间建立了强(|R|>0.6,p<0.01)或中度(|R|>0.4,p<0.01)的Pearson 相关性。对于危及器官(OARs),几何参数与剂量差异之间没有发现弱或无显著关系。此外,我们发现 OARs 的剂量分布受目标分割边界误差的影响,而不是距离和 到目标的影响。
目前的几何度量可以反映目标变化的一定程度的剂量效应。为了找到导致 OARs 剂量变化的目标轮廓变化,应该构建更能准确反映分割质量如何影响剂量学的面向临床的度量。