文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于心脏修复的细胞重编程、转分化和去分化方法。

Cell Reprogramming, Transdifferentiation, and Dedifferentiation Approaches for Heart Repair.

作者信息

Almeida Micael, Inácio José M, Vital Carlos M, Rodrigues Madalena R, Araújo Beatriz C, Belo José A

机构信息

Stem Cells and Development Laboratory, iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal.

出版信息

Int J Mol Sci. 2025 Mar 27;26(7):3063. doi: 10.3390/ijms26073063.


DOI:10.3390/ijms26073063
PMID:40243729
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11988544/
Abstract

Cardiovascular disease (CVD) remains the leading cause of death globally, with myocardial infarction (MI) being a major contributor. The current therapeutic approaches are limited in effectively regenerating damaged cardiac tissue. Up-to-date strategies for heart regeneration/reconstitution aim at cardiac remodeling through repairing the damaged tissue with an external cell source or by stimulating the existing cells to proliferate and repopulate the compromised area. Cell reprogramming is addressed to this challenge as a promising solution, converting fibroblasts and other cell types into functional cardiomyocytes, either by reverting cells to a pluripotent state or by directly switching cell lineage. Several strategies such as gene editing and the application of miRNA and small molecules have been explored for their potential to enhance cardiac regeneration. Those strategies take advantage of cell plasticity by introducing reprogramming factors that regress cell maturity in vitro, allowing for their later differentiation and thus endorsing cell transplantation, or promote in situ cell proliferation, leveraged by scaffolds embedded with pro-regenerative factors promoting efficient heart restoration. Despite notable advancements, important challenges persist, including low reprogramming efficiency, cell maturation limitations, and safety concerns in clinical applications. Nonetheless, integrating these innovative approaches offers a promising alternative for restoring cardiac function and reducing the dependency on full heart transplants.

摘要

心血管疾病(CVD)仍然是全球主要的死亡原因,心肌梗死(MI)是主要促成因素。目前的治疗方法在有效再生受损心脏组织方面存在局限性。最新的心脏再生/重构策略旨在通过外部细胞来源修复受损组织或刺激现有细胞增殖并重新填充受损区域来实现心脏重塑。细胞重编程作为一种有前景的解决方案被用于应对这一挑战,即将成纤维细胞和其他细胞类型转化为功能性心肌细胞,方法是将细胞恢复到多能状态或直接转换细胞谱系。人们已经探索了几种策略,如基因编辑以及miRNA和小分子的应用,以挖掘它们增强心脏再生的潜力。这些策略利用细胞可塑性,通过引入在体外使细胞成熟度倒退的重编程因子,使其随后分化,从而支持细胞移植,或通过嵌入促进心脏有效恢复的促再生因子的支架来促进原位细胞增殖。尽管取得了显著进展,但重要挑战依然存在,包括重编程效率低、细胞成熟受限以及临床应用中的安全性问题。尽管如此,整合这些创新方法为恢复心脏功能和减少对全心脏移植的依赖提供了一个有前景的替代方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3fc/11988544/990a30cc084c/ijms-26-03063-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3fc/11988544/fe037e7a7828/ijms-26-03063-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3fc/11988544/206867671a78/ijms-26-03063-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3fc/11988544/1cd9b3214e50/ijms-26-03063-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3fc/11988544/83c880ed63b6/ijms-26-03063-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3fc/11988544/990a30cc084c/ijms-26-03063-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3fc/11988544/fe037e7a7828/ijms-26-03063-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3fc/11988544/206867671a78/ijms-26-03063-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3fc/11988544/1cd9b3214e50/ijms-26-03063-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3fc/11988544/83c880ed63b6/ijms-26-03063-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3fc/11988544/990a30cc084c/ijms-26-03063-g005.jpg

相似文献

[1]
Cell Reprogramming, Transdifferentiation, and Dedifferentiation Approaches for Heart Repair.

Int J Mol Sci. 2025-3-27

[2]
Pluripotent reprogramming and lineage reprogramming: promises and challenges in cardiovascular regeneration.

Tissue Eng Part B Rev. 2014-8

[3]
Partial Cell Fate Transitions to Promote Cardiac Regeneration.

Cells. 2024-12-4

[4]
Decoding the epigenetic and transcriptional basis of direct cardiac reprogramming.

Stem Cells. 2025-3-10

[5]
In vivo reprogramming for heart regeneration: A glance at efficiency, environmental impacts, challenges and future directions.

J Mol Cell Cardiol. 2017-5-11

[6]
Direct Reprogramming of Resident Non-Myocyte Cells and Its Potential for In Vivo Cardiac Regeneration.

Cells. 2023-4-15

[7]
Direct Cardiac Reprogramming for Cardiovascular Regeneration and Differentiation.

Keio J Med. 2020-9-25

[8]
In situ reprogramming of cardiac fibroblasts into cardiomyocytes in mouse heart with chemicals.

Acta Pharmacol Sin. 2024-11

[9]
Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration.

Nat Rev Mol Cell Biol. 2011-2

[10]
Direct Reprogramming-The Future of Cardiac Regeneration?

Int J Mol Sci. 2015-7-29

引用本文的文献

[1]
Tissue nanotransfection and cellular reprogramming in regenerative medicine and antimicrobial dynamics.

Front Bioeng Biotechnol. 2025-6-18

本文引用的文献

[1]
C166 EVs potentiate miR cardiac reprogramming via miR-148a-3p.

J Mol Cell Cardiol. 2024-5

[2]
miRNAs in Heart Development and Disease.

Int J Mol Sci. 2024-1-30

[3]
Multi-chamber cardioids unravel human heart development and cardiac defects.

Cell. 2023-12-7

[4]
Chemical Transdifferentiation of Somatic Cells: Unleashing the Power of Small Molecules.

Biomedicines. 2023-10-27

[5]
Nanosystems in Cardiovascular Medicine: Advancements, Applications, and Future Perspectives.

Pharmaceutics. 2023-7-12

[6]
Human Stem Cells for Cardiac Disease Modeling and Preclinical and Clinical Applications-Are We on the Road to Success?

Cells. 2023-6-27

[7]
Positive effect of miR-2392 on fibroblast to cardiomyocyte-like cell fate transition: An in silico and in vitro study.

Gene. 2023-8-30

[8]
Regeneration of the heart: from molecular mechanisms to clinical therapeutics.

Mil Med Res. 2023-4-26

[9]
Retinoic acid signaling modulation guides in vitro specification of human heart field-specific progenitor pools.

Nat Commun. 2023-4-3

[10]
Gene-Edited Human-Induced Pluripotent Stem Cell Lines to Elucidate Function throughout Cardiac Differentiation.

Cells. 2023-2-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索