Lin Xin, Liang Hua, Dai Ke, Zhou Jing, Tian Qiang, Xiang Yuge, Guo Zhicheng, Almásy László
State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China.
School of National Defense, Southwest University of Science and Technology, Mianyang 621010, China.
Int J Mol Sci. 2025 Mar 31;26(7):3231. doi: 10.3390/ijms26073231.
Thorium is a notable candidate for resolving uranium shortage caused by the global application of nuclear power generation. Uranium extraction from seawater is another attempt to handle its source deficiency, however, vanadium is one of the main competitive elements in that process. Exploration of probes which can discriminatively detect thorium and vanadium from uranium has primary significance for their further separation and for environmental protection. Herein, N'-(2,4-dihydroxybenzylidene)-4-hydroxylphenylhydrazide, , is used as sensor for Th and vanadyl (VO) determination. demonstrates a specific "turn-on" fluorescence selectivity towards Th over f-block and other foreign metal ions, with a detection limit (LOD) of 7.19 nM in acidic solution and a binding constant of 9.97 × 10 M. Meanwhile, it shows a "turn-off" fluorescence response towards VO over other metal ions at the coexistence of Th, with a LOD of 0.386 μM in the same media and a binding constant of 4.54 × 10 M. The recognition mechanism, based on HRMS, H NMR, and FT-IR results, demonstrates that VO causes the fluorescence quenching by replacing Th to coordinate with . In real water detection tests, Th and VO exhibited satisfying recoveries. These findings expand the application of sensors in nuclide pollution control.
钍是解决全球核能发电应用导致的铀短缺问题的一个显著候选元素。从海水中提取铀是应对其资源短缺的另一种尝试,然而,钒是该过程中的主要竞争元素之一。探索能够从铀中选择性检测钍和钒的探针,对于它们的进一步分离以及环境保护具有重要意义。在此,N'-(2,4-二羟基亚苄基)-4-羟基苯肼被用作测定钍和钒酰(VO)的传感器。该传感器对钍相对于f族和其他外来金属离子表现出特定的“开启”荧光选择性,在酸性溶液中的检测限(LOD)为7.19 nM,结合常数为9.97×10 M。同时,在钍共存的情况下,它对VO相对于其他金属离子表现出“关闭”荧光响应,在相同介质中的LOD为0.386 μM,结合常数为4.54×10 M。基于高分辨质谱(HRMS)、核磁共振氢谱(H NMR)和傅里叶变换红外光谱(FT-IR)结果的识别机制表明,VO通过取代钍与该传感器配位而导致荧光猝灭。在实际水样检测试验中,钍和VO表现出令人满意的回收率。这些发现扩展了传感器在核素污染控制中的应用。