Wang Jiaqi, Xing Yi, Ngatio Michael, Bies Paulina, Xu Lu Lucy, Xing Liuxi, Zarea Ahmed, Makela Ashley V, Contag Christopher H, Li Jinxing
Department of Biomedical Engineering, and Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA.
Program in Cellular and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
Adv Mater. 2025 Jul;37(27):e2416966. doi: 10.1002/adma.202416966. Epub 2025 Apr 17.
Nature's ability to create complex and functionalized organisms has long inspired engineers and scientists to develop increasingly advanced machines. Magnetotactic bacteria (MTB), a group of Gram-negative prokaryotes that biomineralize iron and thrive in aquatic environments, have garnered significant attention from the bioengineering community. These bacteria possess chains of magnetic nanocrystals known as magnetosomes, which allow them to align with Earth's geomagnetic field and navigate through aquatic environments via magnetotaxis, enabling localization to areas rich in nutrients and optimal oxygen concentration. Their built-in magnetic components, along with their intrinsic and/or modified biological functions, make them one of the most promising platforms for future medical microrobots. Leveraging an externally applied magnetic field, the motion of MTBs can be precisely controlled, rendering them suitable for use as a new type of biohybrid microrobotics with great promise in medicine for bioimaging, drug delivery, cancer therapy, antimicrobial treatment, and detoxification. This mini-review provides an up-to-date overview of recent advancements in MTB microrobots, delineates the interaction between MTB microrobots and magnetic fields, elucidates propulsion mechanisms and motion control, and reports state-of-the-art strategies for modifying and functionalizing MTB for medical applications.
自然界创造复杂且功能化生物体的能力长期以来一直激励着工程师和科学家开发日益先进的机器。趋磁细菌(MTB)是一类革兰氏阴性原核生物,它们能生物矿化铁并在水生环境中繁衍生息,已引起生物工程界的广泛关注。这些细菌拥有被称为磁小体的磁性纳米晶体链,这使它们能够与地球的地磁场对齐,并通过趋磁作用在水生环境中导航,从而定位到富含营养物质和具有最佳氧气浓度的区域。它们内置的磁性组件,以及其固有的和/或经过修饰的生物学功能,使其成为未来医用微型机器人最有前景的平台之一。利用外部施加的磁场,可以精确控制趋磁细菌的运动,使其适合用作一种新型的生物杂交微型机器人,在医学上的生物成像、药物递送、癌症治疗、抗菌治疗和解毒等方面具有巨大潜力。本综述提供了趋磁细菌微型机器人最新进展的概述,阐述了趋磁细菌微型机器人与磁场之间的相互作用,阐明了推进机制和运动控制,并报告了用于医学应用的趋磁细菌修饰和功能化的最新策略。
Adv Mater. 2025-7
2025-1
Arch Ital Urol Androl. 2025-6-30
Cochrane Database Syst Rev. 2022-10-4
Psychopharmacol Bull. 2024-7-8
Health Technol Assess. 2001
Cochrane Database Syst Rev. 2021-4-19
J Nanobiotechnology. 2025-7-1
Chem Soc Rev. 2024-9-16
ACS Appl Mater Interfaces. 2023-2-8
Lab Chip. 2023-3-1
Sci Robot. 2022-10-26
J Control Release. 2022-11
Colloids Surf B Biointerfaces. 2022-8
ACS Appl Mater Interfaces. 2022-3-30
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2022-1