Suppr超能文献

解读耳念珠菌V型进化枝中的氟康唑耐药性:外排泵基因表达和麦角固醇途径突变的作用

Deciphering Fluconazole Resistance in Candida auris clade V: The Role of Efflux Pump Gene Expression and Ergosterol Pathway Mutations.

作者信息

Ebrahimi Barough Robab, Abastabar Mahdi, Moazeni Maryam, Javidnia Javad, Valadan Reza, Bandegani Azadeh, Nosratabadi Mohsen, Haghani Iman, Spruijtenburg Bram, Armstrong-James Darius, Badali Hamid

机构信息

Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran.

Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, 48157-33971, Iran.

出版信息

Mycopathologia. 2025 Apr 17;190(3):38. doi: 10.1007/s11046-025-00945-7.

Abstract

Candida auris is an emerging multidrug-resistant yeast pathogen that poses a serious global health threat. In particular, fluconazole resistance is common in C. auris, posing challenges for treating invasive infections. Understanding the genetic and molecular mechanisms underlying fluconazole resistance in C. auris is crucial for developing effective control strategies. The current study investigated the genetic and molecular basis of fluconazole resistance in C. auris clade V isolates. Furthermore, we examined mutations in ergosterol biosynthesis genes and expression of efflux pump genes in fluconazole-resistant versus susceptible in strains Clade V. Two C. auris isolates, one fluconazole-resistant, and one fluconazole-susceptible, were subjected to qPCR analysis of efflux pump gene (CDR1, CDR2, MDR1, MDR2) expression. Protein structure modeling was also performed to assess the impact of mutation in the ergosterol biosynthesis gene (ERG11) on antifungal drug accessibility. qPCR analysis revealed no significant difference in the expression levels of the efflux pump genes CDR1, CDR2, and MDR1 between the resistant and susceptible strains. Protein structure modeling indicated that the Y132F mutation in ERG11 likely altered fluconazole binding and accessibility. This study provides insights into the genetic and molecular mechanisms underpinning fluconazole resistance in C. auris Clade V. The findings highlight the critical roles of ERG11 mutation in mediating azole resistance in this emerging fungal pathogen.

摘要

耳念珠菌是一种新出现的多重耐药酵母病原体,对全球健康构成严重威胁。特别是,耳念珠菌对氟康唑耐药很常见,给侵袭性感染的治疗带来了挑战。了解耳念珠菌对氟康唑耐药的遗传和分子机制对于制定有效的控制策略至关重要。当前的研究调查了耳念珠菌V型分支分离株对氟康唑耐药的遗传和分子基础。此外,我们检查了V型分支中氟康唑耐药菌株与敏感菌株中麦角固醇生物合成基因的突变以及外排泵基因的表达。对一株氟康唑耐药和一株氟康唑敏感的两株耳念珠菌分离株进行了外排泵基因(CDR1、CDR2、MDR1、MDR2)表达的qPCR分析。还进行了蛋白质结构建模,以评估麦角固醇生物合成基因(ERG11)中的突变对抗真菌药物可及性的影响。qPCR分析显示,耐药菌株和敏感菌株之间外排泵基因CDR1、CDR2和MDR1的表达水平没有显著差异。蛋白质结构建模表明,ERG11中的Y132F突变可能改变了氟康唑的结合和可及性。本研究深入了解了耳念珠菌V型分支对氟康唑耐药的遗传和分子机制。这些发现突出了ERG11突变在介导这种新兴真菌病原体对唑类耐药中的关键作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验