Mangoli Avani, Valentine Vennesa, Maingi Spencer M, Wu Sophie R, Liu Harrison Q, Aksu Michael, Jain Vaibhav, Foreman Bronwen E, Regal Joshua A, Weidenhammer Loren B, Stewart Connor E, Guerra Garcia Maria E, Hocke Emily, Abramson Karen, Michaeli Tal Falick, Williams Nerissa T, Luo Lixia, Romero Megan, Deland Katherine, Gadd Samantha, Uchida Eita, Attardi Laura, Abe Kouki, Hashizume Rintaro, Ashley David M, Becher Oren J, Kirsch David G, Gregory Simon G, Reitman Zachary J
The Preston Robert Tisch Brain Tumor Center.
Department of Radiation Oncology, and.
J Clin Invest. 2025 Apr 17;135(12). doi: 10.1172/JCI179395. eCollection 2025 Jun 16.
Diffuse midline gliomas (DMGs) are lethal brain tumors characterized by p53-inactivating mutations and oncohistone H3.3K27M mutations that rewire the cellular response to genotoxic stress. We used RCAS/tv-a retroviruses and Cre recombinase to inactivate p53 and induce native H3.3K27M mutations in a lineage- and spatially directed manner. We generated primary mouse tumors that recapitulated human DMG. Disrupting ataxia-telangiectasia mutated (ATM) kinase enhanced the efficacy of radiation therapy (RT) in murine and patient-derived DMG models and increased survival. Microscopy-based in situ sequencing was used to spatially resolve transcriptional profiles in more than 750,000 single cells with or without ATM disruption and RT, revealing altered immune-neoplastic and endothelial cell interactions after treatment. An allelic series of primary murine DMG models with different p53 mutations confirmed that transactivation-independent p53 activity was a key mediator of radiosensitivity after ATM disruption. We generated primary DMG mouse models and performed deep profiling that revealed mechanisms of response to ATM disruption and RT that can be utilized as a therapeutic strategy.
弥漫性中线胶质瘤(DMG)是一种致命的脑肿瘤,其特征在于p53失活突变和致癌组蛋白H3.3K27M突变,这些突变会重新调整细胞对基因毒性应激的反应。我们使用RCAS/tv-a逆转录病毒和Cre重组酶以谱系和空间定向的方式使p53失活并诱导天然H3.3K27M突变。我们生成了重现人类DMG的原发性小鼠肿瘤。破坏共济失调毛细血管扩张突变(ATM)激酶可增强放射治疗(RT)在小鼠和患者来源的DMG模型中的疗效并提高生存率。基于显微镜的原位测序用于在超过750,000个有或没有ATM破坏和RT的单细胞中空间解析转录谱,揭示治疗后免疫-肿瘤和内皮细胞相互作用的改变。一系列具有不同p53突变的原发性小鼠DMG模型证实,在ATM破坏后,不依赖反式激活的p53活性是放射敏感性的关键介质。我们生成了原发性DMG小鼠模型并进行了深度分析,揭示了对ATM破坏和RT的反应机制,这些机制可作为一种治疗策略。