Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA.
Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Nat Methods. 2022 Sep;19(9):1076-1087. doi: 10.1038/s41592-022-01575-3. Epub 2022 Sep 1.
A central problem in spatial transcriptomics is detecting differentially expressed (DE) genes within cell types across tissue context. Challenges to learning DE include changing cell type composition across space and measurement pixels detecting transcripts from multiple cell types. Here, we introduce a statistical method, cell type-specific inference of differential expression (C-SIDE), that identifies cell type-specific DE in spatial transcriptomics, accounting for localization of other cell types. We model gene expression as an additive mixture across cell types of log-linear cell type-specific expression functions. C-SIDE's framework applies to many contexts: DE due to pathology, anatomical regions, cell-to-cell interactions and cellular microenvironment. Furthermore, C-SIDE enables statistical inference across multiple/replicates. Simulations and validation experiments on Slide-seq, MERFISH and Visium datasets demonstrate that C-SIDE accurately identifies DE with valid uncertainty quantification. Last, we apply C-SIDE to identify plaque-dependent immune activity in Alzheimer's disease and cellular interactions between tumor and immune cells. We distribute C-SIDE within the R package https://github.com/dmcable/spacexr .
空间转录组学中的一个核心问题是在组织背景下检测细胞类型内差异表达(DE)的基因。学习 DE 的挑战包括跨空间改变细胞类型组成和测量像素检测来自多个细胞类型的转录本。在这里,我们介绍了一种统计方法,即细胞类型特异性差异表达推断(C-SIDE),该方法可识别空间转录组学中的细胞类型特异性 DE,同时考虑到其他细胞类型的定位。我们将基因表达建模为细胞类型之间的对数线性细胞类型特异性表达函数的加性混合。C-SIDE 的框架适用于许多情况:由于病理学、解剖区域、细胞间相互作用和细胞微环境引起的 DE。此外,C-SIDE 能够进行多次/重复的统计推断。在 Slide-seq、MERFISH 和 Visium 数据集上的模拟和验证实验表明,C-SIDE 可以准确识别具有有效不确定性量化的 DE。最后,我们应用 C-SIDE 来识别阿尔茨海默病中的斑块依赖性免疫活性和肿瘤与免疫细胞之间的细胞相互作用。我们在 R 包 https://github.com/dmcable/spacexr 中分发 C-SIDE。