Poongavanan Jenicca, Dunaiski Marcel, D'or Graeme, Kraemer Moritz U G, Giovanetti Marta, Lim Ahyoung, Brady Oliver J, Baxter Cheryl, Fonseca Vagner, Alcantara Luiz, de Oliveira Tulio, Tegally Houriiyah
Centre for Epidemic Response and Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa.
Computer Science Division, Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, South Africa.
medRxiv. 2025 Mar 4:2025.02.28.25323068. doi: 10.1101/2025.02.28.25323068.
Oropouche virus (OROV) is an emerging arbovirus with increasing outbreaks in South America, yet its environmental drivers and potential range remain poorly understood. Using ecological niche modeling (ENM) with random forests, we assessed the environmental suitability of OROV and its primary vector, , across Brazil and the Americas. We evaluated five pseudo-absence sampling techniques, considering pseudo-absence ratios, buffer radii, and density smoothing factors to determine the most effective modeling approach. Key environmental predictors included humidity, agricultural land-use, and forest cover, while temperature had minimal influence for both the virus and the vector. The resulting suitability model identifies high transmission risk areas in Central and South America, and reveals that environmental suitability patterns align with seasonal fluctuations in case numbers, with peaks in Amazonian states at the beginning of the year and an expansion into non-Amazonian regions later in the year. A bivariate suitability map highlighted strong spatial overlap between OROV and , with potential co-suitability areas with mosquito, a suspected secondary vector. These findings enhance understanding of OROV transmission dynamics, supporting risk assessment, surveillance, and vector control strategies.
奥罗普切病毒(OROV)是一种在南美洲爆发次数不断增加的新兴虫媒病毒,但其环境驱动因素和潜在传播范围仍知之甚少。我们使用随机森林生态位建模(ENM)方法,评估了OROV及其主要传播媒介在巴西和美洲的环境适宜性。我们评估了五种伪缺失采样技术,考虑了伪缺失率、缓冲半径和密度平滑因子,以确定最有效的建模方法。关键的环境预测因子包括湿度、农业土地利用和森林覆盖,而温度对病毒和传播媒介的影响最小。由此产生的适宜性模型确定了中美洲和南美洲的高传播风险区域,并揭示了环境适宜性模式与病例数的季节性波动一致,年初亚马逊州出现高峰,随后在当年晚些时候扩展到非亚马逊地区。二元适宜性图突出显示了OROV与其传播媒介之间强烈的空间重叠,以及与疑似次要传播媒介蚊子的潜在共同适宜区域。这些发现增进了对OROV传播动态的理解,为风险评估、监测和病媒控制策略提供了支持。