Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU), Großhaderner Str. 9, 82152 Planegg/Martinsried, Germany; Helmholtz Center Munich, Biomedical Center (BMC), Institute of Stem Cell Research, Großhaderner Str. 9, 82152 Planegg/Martinsried, Germany; SyNergy Excellence Cluster, Munich, Germany.
Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU), Großhaderner Str. 9, 82152 Planegg/Martinsried, Germany; Helmholtz Center Munich, Biomedical Center (BMC), Institute of Stem Cell Research, Großhaderner Str. 9, 82152 Planegg/Martinsried, Germany.
Curr Opin Neurobiol. 2021 Aug;69:185-192. doi: 10.1016/j.conb.2021.03.014. Epub 2021 May 10.
Regenerative approaches have made such a great progress, now aiming toward replacing the exact neurons lost upon injury or neurodegeneration. Transplantation and direct reprogramming approaches benefit from identification of molecular programs for neuronal subtype specification, allowing engineering of more precise neuronal subtypes. Disentangling subtype diversity from dynamic transcriptional states presents a challenge now. Adequate identity and connectivity is a prerequisite to restore neuronal network function, which is achieved by transplanted neurons generating the correct output and input, depending on the location and injury condition. Direct neuronal reprogramming of local glial cells has also made great progress in achieving high efficiency of conversion, with adequate output connectivity now aiming toward the goal of replacing neurons in a noninvasive approach.
再生方法取得了如此大的进展,现在的目标是替代损伤或神经退行性变后丢失的确切神经元。移植和直接重编程方法受益于鉴定神经元亚型特化的分子程序,从而能够对更精确的神经元亚型进行工程设计。现在,从动态转录状态中分离亚型多样性是一个挑战。适当的身份和连接性是恢复神经元网络功能的前提,这是通过移植的神经元产生正确的输出和输入来实现的,具体取决于位置和损伤情况。局部神经胶质细胞的直接神经元重编程在实现高效转化方面也取得了很大进展,现在的目标是通过非侵入性方法实现足够的输出连接来替代神经元。