Tran Tran Q B, Lip Stefanie, Wu Honghan, Visweswaran Shyam, Pell Jill P, Padmanabhan Sandosh
School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK.
Queen Elizabeth University Hospital, Glasgow, UK.
Am J Hypertens. 2025 Jul 15;38(8):595-604. doi: 10.1093/ajh/hpaf055.
Transformer-based neural networks excel in modelling high-dimensional, time-series data with complex dependencies. This proof-of-concept study applies a transformer-X-learner framework to estimate treatment effects using real-world data, using antihypertensive drug exposure and COVID-19 risk as an exemplar.
We conducted a case-control study of 303,220 NHS Greater Glasgow and Clyde patients aged ≥ 40 years during the first two COVID-19 pandemic waves. Using a transformer-X-learner framework that incorporated temporal patterns in medication usage and comorbidities, we controlled for confounding effects and estimated individual and average treatment effects ACEIs, beta-blockers (BBs), calcium channel blockers (CCBs), thiazides (THZs), and statins on 180-day SARS-CoV-2 infection risk.
The transformer-X-learner framework outperformed traditional approaches, achieving an F1 score of 0.82 and area under the precision-recall curve (AUPRC) of 0.78. ACEIs showed a negligible overall impact on COVID-19 risk (ATE: 0.97%±5.5), while BBs (-8.3%±7.3%) and CCBs (-9.7%±8.1%) were protective. Statins (3.5%±6.1%) and THZs (4.3%±10.8%) showed slight increases in risk. Treatment effects were consistent across age, gender, and socioeconomic categories.
ACEIs do not substantially increase the risk of COVID-19 infection while the protective effects of BBs and CCBs warrant further investigation. This study highlights the potential of transformer-based causal inference models as a powerful tool for evaluating treatment safety and efficacy in complex healthcare scenarios.
基于Transformer的神经网络在对具有复杂依赖关系的高维时间序列数据进行建模方面表现出色。本概念验证研究应用Transformer-X-learner框架,以抗高血压药物暴露和新冠病毒疾病风险为例,使用真实世界数据估计治疗效果。
我们对303220名年龄≥40岁的NHS格拉斯哥及克莱德地区患者进行了一项病例对照研究,研究时间为新冠疫情的前两波。我们使用一个纳入了用药时间模式和合并症的Transformer-X-learner框架,控制混杂效应,并估计血管紧张素转换酶抑制剂(ACEIs)、β受体阻滞剂(BBs)、钙通道阻滞剂(CCBs)、噻嗪类药物(THZs)和他汀类药物对180天内感染新冠病毒风险的个体治疗效果和平均治疗效果。
Transformer-X-learner框架优于传统方法,F1分数达到0.82,精确召回率曲线下面积(AUPRC)为0.78。ACEIs对新冠病毒疾病风险的总体影响可忽略不计(平均治疗效果:0.97%±5.5),而BBs(-8.3%±7.3%)和CCBs(-9.7%±8.1%)具有保护作用。他汀类药物(3.5%±6.1%)和THZs(4.3%±10.8%)显示风险略有增加。治疗效果在年龄、性别和社会经济类别中保持一致。
ACEIs不会大幅增加新冠病毒感染风险,而BBs和CCBs的保护作用值得进一步研究。本研究强调了基于Transformer的因果推理模型作为评估复杂医疗场景中治疗安全性和有效性的有力工具的潜力。