Wang Jiaqi, Luo Junyu, Ye Muchao, Wang Xiaochen, Zhong Yuan, Chang Aofei, Huang Guanjie, Yin Ziyi, Xiao Cao, Sun Jimeng, Ma Fenglong
Pennsylvania State University.
GE Healthcare.
IJCAI (U S). 2024 Aug;2024:8272-8280. doi: 10.24963/ijcai.2024/914.
The development of electronic health records (EHR) systems has enabled the collection of a vast amount of digitized patient data. However, utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics. With the advancements in machine learning techniques, deep learning has demonstrated its superiority in various applications, including healthcare. This survey systematically reviews recent advances in deep learning-based predictive models using EHR data. Specifically, we introduce the background of EHR data and provide a mathematical definition of the predictive modeling task. We then categorize and summarize predictive deep models from multiple perspectives. Furthermore, we present benchmarks and toolkits relevant to predictive modeling in healthcare. Finally, we conclude this survey by discussing open challenges and suggesting promising directions for future research.
电子健康记录(EHR)系统的发展使得大量数字化患者数据得以收集。然而,由于其独特特性,利用EHR数据进行预测建模存在若干挑战。随着机器学习技术的进步,深度学习在包括医疗保健在内的各种应用中展现出其优越性。本综述系统地回顾了使用EHR数据的基于深度学习的预测模型的最新进展。具体而言,我们介绍了EHR数据的背景,并给出了预测建模任务的数学定义。然后,我们从多个角度对预测性深度模型进行分类和总结。此外,我们还介绍了与医疗保健预测建模相关的基准和工具包。最后,我们通过讨论开放挑战并提出未来研究的有前景方向来结束本综述。