Suppr超能文献

电子健康记录机器学习(EHR-ML):一个用于利用电子健康记录设计机器学习应用程序的数据驱动框架。

EHR-ML: A data-driven framework for designing machine learning applications with electronic health records.

作者信息

Ramakrishnaiah Yashpal, Macesic Nenad, Webb Geoffrey I, Peleg Anton Y, Tyagi Sonika

机构信息

Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, 3000, VIC, Australia.

Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, 3000, VIC, Australia; Centre to Impact AMR, Monash University, Melbourne, 3000, VIC, Australia.

出版信息

Int J Med Inform. 2025 Apr;196:105816. doi: 10.1016/j.ijmedinf.2025.105816. Epub 2025 Jan 28.

Abstract

OBJECTIVE

The healthcare landscape is experiencing a transformation with the integration of Artificial Intelligence (AI) into traditional analytic workflows. However, its integration faces challenges resulting in a crisis of generalisability. Key obstacles include; 1) Insufficient consideration of local contextual factors, such as institution-specific data formats, practices, and protocols, which can lead to variability in clinical practices across different institutions. 2) ad-hoc data preparation and design of machine learning strategies. 3) manual subjective adjustment of design parameters resulting in sub-optimal performance. 4) EHR specific challenges regarding data biases affecting the model outcomes and unique intermittent temporal nature of the data necessitating specialised handling 5) lack of cross-institutional data validations.

METHODS

To address these challenges, EHR-ML, provides an easy to use structured framework for designing optimum machine learning applications in a data-driven manner. The framework supports ingestion of local institutional electronic health records (EHRs) and process standardisation. The study design and parameter optimisation is done in a fully data-driven evidence-based approach. It seamlessly integrating with existing quality control tools. To handle the unique characteristics of the EHR data, it offers customisable ensemble models. It enables the acquisition of EHR data from diverse systems and harmonise them into common formats following international standards.

RESULTS

The effectiveness of the EHR-ML is demonstrated through a series of case studies. These studies highlight its capability to develop high-performance models in a fully automated manner, consistently surpassing the performance of traditional methodologies. Furthermore, they exhibited strong generalisability across diverse healthcare settings.

DISCUSSION AND CONCLUSION

EHR-ML enhances the clinical relevance and accuracy of predictive models by incorporating local context into machine learning applications. Additionally, by providing an user-friendly fully-automated framework, it facilitates rapid hypothesis testing aimed to generate localised biomedical knowledge.

摘要

目的

随着人工智能(AI)融入传统分析工作流程,医疗保健领域正在经历一场变革。然而,其整合面临挑战,导致了可推广性危机。主要障碍包括:1)对当地背景因素考虑不足,如机构特定的数据格式、实践和协议,这可能导致不同机构临床实践的差异。2)临时的数据准备和机器学习策略设计。3)手动主观调整设计参数导致性能次优。4)电子健康记录(EHR)特有的挑战,即数据偏差影响模型结果,以及数据独特的间歇性时间性质需要专门处理。5)缺乏跨机构数据验证。

方法

为应对这些挑战,EHR-ML提供了一个易于使用的结构化框架,以数据驱动的方式设计最佳机器学习应用程序。该框架支持摄取本地机构的电子健康记录(EHR)并进行流程标准化。研究设计和参数优化以完全数据驱动的循证方法进行。它与现有的质量控制工具无缝集成。为处理EHR数据的独特特征,它提供了可定制的集成模型。它能够从不同系统获取EHR数据,并按照国际标准将它们统一为通用格式。

结果

通过一系列案例研究证明了EHR-ML的有效性。这些研究突出了其以完全自动化方式开发高性能模型的能力,始终超越传统方法的性能。此外,它们在不同的医疗保健环境中表现出很强的可推广性。

讨论与结论

EHR-ML通过将本地背景纳入机器学习应用程序,提高了预测模型的临床相关性和准确性。此外,通过提供一个用户友好的全自动框架,它有助于快速进行假设检验,以生成本地化的生物医学知识。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验