Aggarwal Pooja, Chaudhary Ayushi, De Soumyadeep, Singh Ritika Gautam, Govind Rao Vishal
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
Small. 2025 Aug;21(31):e2501649. doi: 10.1002/smll.202501649. Epub 2025 Apr 18.
Achieving long-lived charge-separated states is paramount for advancing perovskite solar cells technology, enhancing efficiency, and enabling kinetically slow processes like photocatalysis. While hole transport materials (HTMs) are essential for efficient charge extraction, conventional materials suffer from high defect densities at the perovskite/HTM interface, leading to severe nonradiative recombination losses. Previous strategies for surface passivation often rely on external treatments, which pose scalability challenges. This work overcomes these limitations by integrating passivation functionality directly into HTMs through targeted molecular engineering of phenazine derivatives. By leveraging the anchoring capability of the 1,10-phenanthroline (Phen) skeleton and strategically incorporating electron-donating (─NH, ─OCH) and electron-withdrawing (─NO, ─Br) groups, electron density is systematically modulated to control charge transfer dynamics. Electron-donating groups (EDGs) increase charge density on the phenazine core, suppressing trap-assisted recombination and stabilizing charge-separated states. In contrast, electron-withdrawing groups (EWGs) promote dipole formation at perovskite defect sites, leading to prolonged charge separation, as confirmed by observed sustained bleaching in transient absorption spectroscopy. This study reveals the profound impact of substituent electronic effects on interfacial interactions, offering a molecular design strategy for optimizing charge transport and defect mitigation in perovskite optoelectronics. These findings provide a scalable approach to enhancing perovskite-based photovoltaics and photocatalytic applications.
实现长寿命电荷分离态对于推进钙钛矿太阳能电池技术、提高效率以及实现光催化等动力学缓慢的过程至关重要。虽然空穴传输材料(HTM)对于有效的电荷提取至关重要,但传统材料在钙钛矿/HTM界面处存在高缺陷密度,导致严重的非辐射复合损失。以往的表面钝化策略通常依赖外部处理,这带来了可扩展性挑战。这项工作通过对吩嗪衍生物进行有针对性的分子工程,将钝化功能直接整合到HTM中,克服了这些限制。通过利用1,10 - 菲咯啉(Phen)骨架的锚定能力,并策略性地引入供电子(─NH,─OCH)和吸电子(─NO,─Br)基团,系统地调节电子密度以控制电荷转移动力学。供电子基团(EDG)增加吩嗪核心上的电荷密度,抑制陷阱辅助复合并稳定电荷分离态。相比之下,吸电子基团(EWG)促进钙钛矿缺陷位点处的偶极形成,导致电荷分离延长,瞬态吸收光谱中观察到的持续漂白证实了这一点。这项研究揭示了取代基电子效应对界面相互作用的深远影响,为优化钙钛矿光电器件中的电荷传输和缺陷缓解提供了一种分子设计策略。这些发现为增强基于钙钛矿的光伏和光催化应用提供了一种可扩展的方法。