Suppr超能文献

自组装分子对n-i-p钙钛矿太阳能电池中掩埋界面复合的电子效应

Electronic Effect of Self-Assembled Molecules on Buried Interface Recombination in n-i-p Perovskite Solar Cells.

作者信息

Zhang Liu, Wang Chenyu, Wei Yunxiao, Chen Jie, Xin Haimeng, Zhang Hengyu, Liu Tiantian, Lin Ping, Wang Peng, Wu Xiaoping, Yu Xuegong, Ni Zhenyi, Cui Can, Xu Lingbo

机构信息

Zhejiang Key Laboratory of Quantum State Control and Optical Field Manipulation, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China.

State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.

出版信息

ACS Appl Mater Interfaces. 2025 Jul 16;17(28):41342-41349. doi: 10.1021/acsami.5c09978. Epub 2025 Jul 8.

Abstract

Interfacial recombination at the defective buried interface of perovskite solar cells (PSCs) has long been a persistent and formidable challenge. Introducing molecular bridge via self-assembled molecules (SAMs) offers an effective strategy to mitigate this issue, primarily by chemically passivating interfacial defects that cause nonradiative recombination. However, the influence of SAMs on radiative recombination is often overlooked. In this study, two SAMs with similar molecular configurations but distinct electron-donating/-withdrawing characters─3-thiopheneboronic acid (TBA) and 4-pyridineboronic acid (PBA)─are introduced at the buried interface of n-i-p PSCs. Although both SAMs effectively passivate defects, the PSCs based on them exhibit contrasting trends of performance gain and loss for PBA and TBA, respectively. Mechanistic investigations reveal that TBA featuring an electron-donating thiophene group induces n-type doping in the SnO electron transport layer and exacerbates radiative recombination loss, while PBA with the electron-withdrawing pyridine group behaves in an opposite way. These findings highlight the critical role of the electronic effects of SAMs on buried interface recombination beyond their defect passivation function. The trade-off between these two effects is essential for optimizing buried interface engineering through SAMs.

摘要

钙钛矿太阳能电池(PSC)有缺陷的掩埋界面处的界面复合长期以来一直是一个持续且严峻的挑战。通过自组装分子(SAM)引入分子桥提供了一种有效策略来缓解这一问题,主要是通过化学钝化导致非辐射复合的界面缺陷。然而,SAM对辐射复合的影响常常被忽视。在本研究中,两种具有相似分子构型但不同给电子/吸电子特性的SAM——3-噻吩硼酸(TBA)和4-吡啶硼酸(PBA)——被引入到n-i-p型PSC的掩埋界面。尽管两种SAM都能有效钝化缺陷,但基于它们的PSC分别表现出PBA性能增益和TBA性能损失的相反趋势。机理研究表明,具有给电子噻吩基团的TBA在SnO电子传输层中诱导n型掺杂并加剧辐射复合损失,而具有吸电子吡啶基团的PBA表现则相反。这些发现突出了SAM的电子效应在掩埋界面复合中超越其缺陷钝化功能的关键作用。这两种效应之间的权衡对于通过SAM优化掩埋界面工程至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验