Suppr超能文献

机器学习开发出用于预测膀胱癌预后及免疫治疗获益的免疫相关外泌体特征。

Machine learning developed immune-related exosome signature for prognosis and immunotherapy benefit in bladder cancer.

作者信息

Luo Xiaoting, Luo Yi

机构信息

Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.

出版信息

Discov Oncol. 2025 Apr 18;16(1):557. doi: 10.1007/s12672-025-02354-0.

Abstract

BACKGROUND

Bladder cancer is one of the most common malignancies with high invasion and poor clinical outcome. Exosomes exert a vital role in tumor development, drug resistance, and immunotherapy response.

METHODS

Based on the datasets from TCGA, GSE13507, GSE31684, GSE32984 and GSE48276, immune-related exosome signature (IES) was developed with an integrative analysis procedure containing 10 machine learning methods. To investigate the performance of IES in predicting the immunotherapy benefit, three immunotherapy datasets (GSE91061, GSE78220 and IMvigor210) and several predicting scores were used.

RESULTS

The RSF + Enet (alpha = 0.2) algorithm-based signature was considered as the optimal IES as it had a highest average C-index of 0.75. The IES presented a powerful performance in predicting the survival outcome of bladder cancer patients and their AUC of 1-, 3- and 5-year ROC curve was 0.711, 0.751 and 0.806 in TCGA dataset. A lower level of immune-activated cells and immune-related function, higher tumor immune dysfunction and exclusion score, higher immune escape score, higher intratumor heterogeneity score and lower PD1&CTLA4 immunophenoscore, and lower tumor mutational burden score were obtained in bladder cancer with high IES score, suggesting less immunotherapy benefits. Moreover, bladder cancer cases with high IES score had a higher cancer related hallmark score.

CONCLUSION

The current study developed an optimal IES in bladder cancer, which acted as an indicator for predicting clinical outcome and immunotherapy benefits for bladder cancer patients.

摘要

背景

膀胱癌是最常见的恶性肿瘤之一,具有高侵袭性和较差的临床预后。外泌体在肿瘤发展、耐药性和免疫治疗反应中发挥着至关重要的作用。

方法

基于来自TCGA、GSE13507、GSE31684、GSE32984和GSE48276的数据集,通过包含10种机器学习方法的综合分析程序开发了免疫相关外泌体特征(IES)。为了研究IES在预测免疫治疗获益方面的性能,使用了三个免疫治疗数据集(GSE91061、GSE78220和IMvigor210)以及几个预测评分。

结果

基于RSF + Enet(α = 0.2)算法的特征被认为是最优的IES,因为它具有最高的平均C指数0.75。IES在预测膀胱癌患者的生存结局方面表现出强大的性能,在TCGA数据集中其1年、3年和5年ROC曲线的AUC分别为0.711、0.751和0.806。IES评分高的膀胱癌患者免疫激活细胞和免疫相关功能水平较低,肿瘤免疫功能障碍和排除评分较高,免疫逃逸评分较高,肿瘤内异质性评分较高,PD1&CTLA4免疫表型评分较低,肿瘤突变负荷评分较低,提示免疫治疗获益较少。此外,IES评分高的膀胱癌病例具有更高的癌症相关特征评分。

结论

本研究在膀胱癌中开发了一种最优的IES,其可作为预测膀胱癌患者临床结局和免疫治疗获益的指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0fe/12008088/e0f470cde6a2/12672_2025_2354_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验