Rabuffo Giovanni, Lokossou Houefa-Armelle, Li Zengmin, Ziaee-Mehr Abolfazl, Hashemi Meysam, Quilichini Pascale P, Ghestem Antoine, Arab Ouafae, Esclapez Monique, Verma Parul, Raj Ashish, Gozzi Alessandro, Sorrentino Pierpaolo, Chuang Kai-Hsiang, Perles-Barbacaru Teodora-Adriana, Viola Angèle, Jirsa Viktor K, Bernard Christophe
Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.
Center for Magnetic Resonance in Biology and Medicine, Aix Marseille University, CNRS, Marseille 13005, France.
Proc Natl Acad Sci U S A. 2025 Apr 22;122(16):e2405706122. doi: 10.1073/pnas.2405706122. Epub 2025 Apr 18.
Understanding how localized brain interventions influence whole-brain dynamics is essential for deciphering neural function and designing therapeutic strategies. Using longitudinal functional MRI datasets collected from mice, we investigated the effects of focal interventions, such as thalamic lesions and chemogenetic silencing of cortical hubs. We found that these local manipulations disrupted the brain's ability to sustain network-wide activity, leading to global functional connectivity (FC) reconfigurations. Personalized mouse brain simulations based on experimental data revealed that alterations in local excitability modulate firing rates and frequency content across distributed brain regions, driving these FC changes. Notably, the topography of the affected brain regions depended on the intervention site, serving as distinctive signatures of localized perturbations. These findings suggest that focal interventions produce consistent yet region-specific patterns of global FC reorganization, providing an explanation for the seemingly paradoxical observations of hypo- and hyperconnectivity reported in the literature. This framework offers mechanistic insights into the systemic effects of localized neural modulation and holds potential for refining clinical diagnostics in focal brain disorders and advancing personalized neuromodulation strategies.
了解局部脑干预如何影响全脑动态对于解读神经功能和设计治疗策略至关重要。利用从小鼠收集的纵向功能磁共振成像数据集,我们研究了局灶性干预的影响,如丘脑损伤和皮层枢纽的化学遗传沉默。我们发现,这些局部操作破坏了大脑维持全网络活动的能力,导致全局功能连接(FC)重新配置。基于实验数据的个性化小鼠脑模拟显示,局部兴奋性的改变调节了分布在整个大脑区域的放电率和频率成分,驱动了这些FC变化。值得注意的是,受影响脑区的拓扑结构取决于干预部位,可作为局部扰动的独特特征。这些发现表明,局灶性干预产生了一致但具有区域特异性的全局FC重组模式,为文献中报道的低连接性和高连接性这一看似矛盾的观察结果提供了解释。该框架为局部神经调节的系统效应提供了机制性见解,并有望改进局灶性脑疾病的临床诊断和推进个性化神经调节策略。