Hashemi Meysam, Depannemaecker Damien, Saggio Marisa, Triebkorn Paul, Rabuffo Giovanni, Fousek Jan, Ziaeemehr Abolfazl, Sip Viktor, Athanasiadis Anastasios, Breyton Martin, Woodman Marmaduke, Wang Huifang, Petkoski Spase, Sorrentino Pierpaolo, Jirsa Viktor
IEEE Rev Biomed Eng. 2025 Apr 21;PP. doi: 10.1109/RBME.2025.3562951.
Current clinical methods often overlook individual variability by relying on population-wide trials, while mechanismbased trials remain underutilized in neuroscience due to the brain's complexity. This situation may change through the use of a Virtual Brain Twin (VBT), which is a personalized digital replica of an individual's brain, integrating structural and functional brain data into advanced computational models and inference algorithms. By bridging the gap between molecular mechanisms, whole-brain dynamics, and imaging data, VBTs enhance the understanding of (patho)physiological mechanisms, advancing insights into both healthy and disordered brain function. Central to VBT is the network modeling that couples mesoscopic representation of neuronal activity through white matter connectivity, enabling the simulation of brain dynamics at a network level. This transformative approach provides interpretable predictive capabilities, supporting clinicians in personalizing treatments and optimizing interventions. This Review outlines the key components of VBT development, covering the conceptual, mathematical, technical, and clinical aspects. We describe the stages of VBT construction-from anatomical coupling and modeling to simulation and Bayesian inference-and demonstrate their applications in resting-state, healthy aging, multiple sclerosis, and epilepsy. Finally, we discuss potential extensions to other neurological disorders, such as Parkinson's disease, and explore future applications in consciousness research and brain-computer interfaces, paving the way for advancements in personalized medicine and brainmachine integration.
当前的临床方法往往依赖于针对全体人群的试验,从而忽视了个体差异,而基于机制的试验由于大脑的复杂性在神经科学领域仍未得到充分利用。通过使用虚拟脑孪生体(VBT),这种情况可能会改变,虚拟脑孪生体是个体大脑的个性化数字复制品,将大脑的结构和功能数据整合到先进的计算模型和推理算法中。通过弥合分子机制、全脑动力学和成像数据之间的差距,虚拟脑孪生体增进了对(病理)生理机制的理解,推动了对健康和紊乱脑功能的深入认识。虚拟脑孪生体的核心是网络建模,它通过白质连接耦合神经元活动的介观表示,从而能够在网络层面模拟脑动力学。这种变革性方法提供了可解释的预测能力,支持临床医生进行个性化治疗和优化干预措施。本综述概述了虚拟脑孪生体开发的关键组成部分,涵盖概念、数学、技术和临床方面。我们描述了虚拟脑孪生体构建的各个阶段——从解剖耦合与建模到模拟和贝叶斯推理——并展示了它们在静息状态、健康衰老、多发性硬化症和癫痫中的应用。最后,我们讨论了对其他神经系统疾病(如帕金森病)的潜在扩展,并探索了在意识研究和脑机接口方面的未来应用,为个性化医学和脑机整合的进步铺平道路。