Suppr超能文献

重症和危重症COVID-19患者的转录组分析揭示了基因表达、剪接和多聚腺苷酸化的变化。

Transcriptomic profiling of severe and critical COVID-19 patients reveals alterations in expression, splicing and polyadenylation.

作者信息

Labrecque Marjorie, Brunet-Ratnasingham Elsa, Hamilton Laura K, Auld Daniel, Montpetit Alexandre, Richards Brent, Durand Madeleine, Rousseau Simon, Finzi Andrés, Kaufmann Daniel E, Tetreault Martine

机构信息

Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.

Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA.

出版信息

Sci Rep. 2025 Apr 18;15(1):13469. doi: 10.1038/s41598-025-95905-y.

Abstract

Coronavirus disease 2019 (COVID-19) is a multi-systemic illness that became a pandemic in March 2020. Although environmental factors and comorbidities can influence disease progression, there is a lack of prognostic markers to predict the severity of COVID-19 illness. Identifying these markers is crucial for improving patient outcomes and appropriately allocating scarce resources. Here, an RNA-sequencing study was conducted on blood samples from unvaccinated, hospitalized patients divided by disease severity; 367 moderate, 173 severe, and 199 critical. Using a bioinformatics approach, we identified differentially expressed genes (DEGs), alternative splicing (AS) and alternative polyadenylation (APA) events that were severity-dependent. In the severe group, we observed a higher expression of kappa immunoglobulins compared to the moderate group. In the critical cohort, a majority of AS events were mutually exclusive exons and APA genes mostly had longer 3'UTRs. Interestingly, multiple genes associated with cytoskeleton, TUBA4A, NRGN, BSG, and CD300A, were differentially expressed, alternatively spliced and polyadenylated in the critical group. Furthermore, several inflammation-related pathways were observed predominantly in critical vs. moderate. We demonstrate that integrating multiple downstream analyses of transcriptomics, from moderate, severe, and critical patients confers a significant advantage in identifying relevant dysregulated genes and pathways.

摘要

2019冠状病毒病(COVID-19)是一种多系统疾病,于2020年3月成为大流行病。尽管环境因素和合并症会影响疾病进展,但缺乏预测COVID-19疾病严重程度的预后标志物。识别这些标志物对于改善患者预后和合理分配稀缺资源至关重要。在此,我们对未接种疫苗、因疾病严重程度分组的住院患者的血液样本进行了RNA测序研究;367例中度患者、173例重度患者和199例危重症患者。使用生物信息学方法,我们鉴定了与疾病严重程度相关的差异表达基因(DEG)、可变剪接(AS)和可变聚腺苷酸化(APA)事件。在重度组中,与中度组相比,我们观察到κ免疫球蛋白的表达更高。在危重症队列中,大多数AS事件是互斥外显子,APA基因大多具有更长的3'非翻译区(3'UTR)。有趣的是,多个与细胞骨架相关的基因,如TUBA4A、NRGN、BSG和CD300A,在危重症组中存在差异表达、可变剪接和聚腺苷酸化。此外,与炎症相关的几条通路主要在危重症组与中度组中被观察到。我们证明,整合来自中度、重度和危重症患者的转录组学多个下游分析,在识别相关失调基因和通路方面具有显著优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/12008264/8756034d685c/41598_2025_95905_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验