Suppr超能文献

使用全面的、无需分割的3D卷积神经网络模型从光学相干断层扫描(OCT)图像中自动学习青光眼视野

Automated learning of glaucomatous visual fields from OCT images using a comprehensive, segmentation-free 3D convolutional neural network model.

作者信息

Koyama Makoto, Ueno Yuta, Ito Yoshikazu, Oshika Tetsuro, Tanito Masaki

机构信息

Minamikoyasu Eye Clinic, 2-8-30 Minamikoyasu, Kimitsu-shi, 299-1162, Chiba, Japan.

Ito Eye Clinic, 3-11-2, Moriya Cyuo, Moriya, Ibaraki, Japan.

出版信息

Sci Rep. 2025 Apr 18;15(1):13395. doi: 10.1038/s41598-025-98511-0.

Abstract

A segmentation-free 3D Convolutional Neural Network (3DCNN) model was adopted to estimate Visual Field (VF) in glaucoma cases using Optical Coherence Tomography (OCT) images. This study, conducted at a university hospital, included 6335 participants (12,325 eyes). Two models were trained, one on the Glaucoma-Specific Training Group (GTG) and one on the Comprehensive Training Group (CTG) that included various ocular conditions without manual preselection. The CTG showed significantly better performance than the GTG in estimating VF thresholds and Mean Deviation (MD) for both Humphrey Field Analyzer (HFA) 24-2 and HFA10-2 test patterns (p < 0.001). Strong correlations were observed between the estimated and actual VF thresholds for HFA24-2 (Pearson's r: 0.878) and HFA10-2 (r: 0.903), as well as MD for HFA24-2 (r: 0.911) and HFA10-2 (r: 0.944) in the CTG. The CTG demonstrated lower estimation errors than the GTG and smaller errors in severe cases. The model's performance remained relatively stable even in advanced glaucoma cases. The model's ability to learn from a comprehensive dataset without human annotation highlights its potential for large-scale training in the future, potentially improving glaucoma assessment and monitoring in clinical practice. Further validation in external datasets and exploration in different clinical settings are warranted.

摘要

采用一种无分割的三维卷积神经网络(3DCNN)模型,利用光学相干断层扫描(OCT)图像来估计青光眼患者的视野(VF)。这项在大学医院进行的研究纳入了6335名参与者(12325只眼睛)。训练了两个模型,一个基于青光眼特异性训练组(GTG),另一个基于综合训练组(CTG),CTG包括各种眼部疾病且未经人工预选。在估计汉弗莱视野分析仪(HFA)24-2和HFA10-2测试模式的视野阈值和平均偏差(MD)方面,CTG的表现明显优于GTG(p < 0.001)。在CTG中,观察到HFA24-2(皮尔逊r:0.878)和HFA10-2(r:0.903)的估计视野阈值与实际视野阈值之间,以及HFA24-2(r:0.911)和HFA10-2(r:0.944)的MD之间存在强相关性。CTG的估计误差低于GTG,在严重病例中的误差更小。即使在晚期青光眼病例中,该模型的性能也保持相对稳定。该模型能够从无人工标注的综合数据集中学习,凸显了其未来大规模训练的潜力,可能改善临床实践中的青光眼评估和监测。有必要在外部数据集中进行进一步验证,并在不同临床环境中进行探索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5285/12008402/3855f86ffa34/41598_2025_98511_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验