Suppr超能文献

无分割 OCT 体积的深度学习模型可提高逐点视野灵敏度估计。

Segmentation-Free OCT-Volume-Based Deep Learning Model Improves Pointwise Visual Field Sensitivity Estimation.

机构信息

Department of Electrical and Computer Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA.

Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA.

出版信息

Transl Vis Sci Technol. 2023 Jun 1;12(6):28. doi: 10.1167/tvst.12.6.28.

Abstract

PURPOSE

The structural changes measured by optical coherence tomography (OCT) are related to functional changes in visual fields (VFs). This study aims to accurately assess the structure-function relationship and overcome the challenges brought by the minimal measurable level (floor effect) of segmentation-dependent OCT measurements commonly used in prior studies.

METHODS

We developed a deep learning model to estimate the functional performance directly from three-dimensional (3D) OCT volumes and compared it to the model trained with segmentation-dependent two-dimensional (2D) OCT thickness maps. Moreover, we proposed a gradient loss to utilize the spatial information of VFs.

RESULTS

Our 3D model was significantly better than the 2D model both globally and pointwise regarding both mean absolute error (MAE = 3.11 + 3.54 vs. 3.47 ± 3.75 dB, P < 0.001) and Pearson's correlation coefficient (0.80 vs. 0.75, P < 0.001). On a subset of test data with floor effects, the 3D model showed less influence from floor effects than the 2D model (MAE = 5.24 ± 3.99 vs. 6.34 ± 4.58 dB, P < 0.001, and correlation 0.83 vs. 0.74, P < 0.001). The gradient loss improved the estimation error for low-sensitivity values. Furthermore, our 3D model outperformed all prior studies.

CONCLUSIONS

By providing a better quantitative model to encapsulate the structure-function relationship more accurately, our method may help deriving VF test surrogates.

TRANSLATIONAL RELEVANCE

DL-based VF surrogates not only benefit patients by reducing the testing time of VFs but also allow clinicians to make clinical judgments without the inherent limitations of VFs.

摘要

目的

光学相干断层扫描(OCT)测量的结构变化与视野(VF)的功能变化有关。本研究旨在准确评估结构-功能关系,并克服以往研究中常用的基于分割的 OCT 测量最小可测量水平(地板效应)带来的挑战。

方法

我们开发了一种深度学习模型,直接从三维(3D)OCT 体积估计功能性能,并将其与基于分割的二维(2D)OCT 厚度图训练的模型进行比较。此外,我们提出了一种梯度损失,以利用 VF 的空间信息。

结果

我们的 3D 模型在全局和逐点方面均明显优于 2D 模型,无论是平均绝对误差(MAE = 3.11 + 3.54 对 3.47 ± 3.75 dB,P < 0.001)还是 Pearson 相关系数(0.80 对 0.75,P < 0.001)。在具有地板效应的测试数据子集上,3D 模型受到地板效应的影响小于 2D 模型(MAE = 5.24 ± 3.99 对 6.34 ± 4.58 dB,P < 0.001,相关性 0.83 对 0.74,P < 0.001)。梯度损失改善了低灵敏度值的估计误差。此外,我们的 3D 模型优于所有先前的研究。

结论

通过提供更好的定量模型更准确地封装结构-功能关系,我们的方法可能有助于推导 VF 测试替代物。

翻译

医学博士 顾晨

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce88/10318595/3fd51ff06246/tvst-12-6-28-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验