Department of Ophthalmology, The University of Tokyo, Tokyo, Japan.
Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan.
Transl Vis Sci Technol. 2021 Nov 1;10(13):28. doi: 10.1167/tvst.10.13.28.
To investigate whether a correction based on a Humphrey field analyzer (HFA) 24-2/30-2 visual field (VF) can improve the prediction performance of a deep learning model to predict the HFA 10-2 VF test from macular optical coherence tomography (OCT) measurements.
This is a multicenter, cross-sectional study. The training dataset comprised 493 eyes of 285 subjects (407, open-angle glaucoma [OAG]; 86, normative) who underwent HFA 10-2 testing and macular OCT. The independent testing dataset comprised 104 OAG eyes of 82 subjects who had undergone HFA 10-2 test, HFA 24-2/30-2 test, and macular OCT. A convolutional neural network (CNN) DL model was trained to predict threshold sensitivity (TH) values in HFA 10-2 from retinal thickness measured by macular OCT. The predicted TH values was modified by pattern-based regularization (PBR) and corrected with HFA 24-2/30-2. Absolute error (AE) of mean TH values and mean absolute error (MAE) of TH values were compared between the CNN-PBR alone model and the CNN-PBR corrected with HFA 24-2/30-2.
AE of mean TH values was lower in the CNN-PBR with HFA 24-2/30-2 correction than in the CNN-PBR alone (1.9dB vs. 2.6dB; P = 0.006). MAE of TH values was lower in the CNN-PBR with correction compared to the CNN-PBR alone (4.2dB vs. 5.3 dB; P < 0.001). The inferior temporal quadrant showed lower prediction errors compared with other quadrants.
The performance of a DL model to predict 10-2 VF from macular OCT was improved by the correction with HFA 24-2/30-2.
This model can reduce the burden of additional HFA 10-2 by making the best use of routinely performed HFA 24-2/30-2 and macular OCT.
研究基于 Humphrey 视野分析仪(HFA)24-2/30-2 视野(VF)的校正是否可以提高深度学习模型预测从黄斑光学相干断层扫描(OCT)测量值到 HFA 10-2VF 测试的预测性能。
这是一项多中心、横断面研究。训练数据集包括 285 名受试者的 493 只眼(407 只为开角型青光眼[OAG],86 只为正常),他们接受了 HFA 10-2 测试和黄斑 OCT 检查。独立测试数据集包括 82 名受试者的 104 只 OAG 眼,他们接受了 HFA 10-2 测试、HFA 24-2/30-2 测试和黄斑 OCT 检查。训练卷积神经网络(CNN)DL 模型以预测黄斑 OCT 测量的视网膜厚度与 HFA 10-2 中的阈值灵敏度(TH)值。通过基于模式的正则化(PBR)对预测的 TH 值进行修改,并使用 HFA 24-2/30-2 进行校正。比较 CNN-PBR 单独模型和 CNN-PBR 与 HFA 24-2/30-2 校正的模型之间平均 TH 值的绝对误差(AE)和 TH 值的平均绝对误差(MAE)。
与 CNN-PBR 单独模型相比,使用 HFA 24-2/30-2 校正的 CNN-PBR 的平均 TH 值的 AE 较低(1.9dB 与 2.6dB;P=0.006)。与 CNN-PBR 单独模型相比,使用校正的 CNN-PBR 的 TH 值的 MAE 较低(4.2dB 与 5.3dB;P<0.001)。下颞象限的预测误差低于其他象限。
通过使用 HFA 24-2/30-2 进行校正,DL 模型预测黄斑 OCT 中的 10-2VF 的性能得到提高。
翻译是否准确,还需要结合原文的上下文来判断,如果你有更多的信息,请提供给我,我会尽力提供更好的翻译。