Suppr超能文献

利用 24-2/30-2 视野校正的深度学习预测青光眼的 10-2 视野光学相干断层扫描。

Predicting 10-2 Visual Field From Optical Coherence Tomography in Glaucoma Using Deep Learning Corrected With 24-2/30-2 Visual Field.

机构信息

Department of Ophthalmology, The University of Tokyo, Tokyo, Japan.

Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan.

出版信息

Transl Vis Sci Technol. 2021 Nov 1;10(13):28. doi: 10.1167/tvst.10.13.28.

Abstract

PURPOSE

To investigate whether a correction based on a Humphrey field analyzer (HFA) 24-2/30-2 visual field (VF) can improve the prediction performance of a deep learning model to predict the HFA 10-2 VF test from macular optical coherence tomography (OCT) measurements.

METHODS

This is a multicenter, cross-sectional study. The training dataset comprised 493 eyes of 285 subjects (407, open-angle glaucoma [OAG]; 86, normative) who underwent HFA 10-2 testing and macular OCT. The independent testing dataset comprised 104 OAG eyes of 82 subjects who had undergone HFA 10-2 test, HFA 24-2/30-2 test, and macular OCT. A convolutional neural network (CNN) DL model was trained to predict threshold sensitivity (TH) values in HFA 10-2 from retinal thickness measured by macular OCT. The predicted TH values was modified by pattern-based regularization (PBR) and corrected with HFA 24-2/30-2. Absolute error (AE) of mean TH values and mean absolute error (MAE) of TH values were compared between the CNN-PBR alone model and the CNN-PBR corrected with HFA 24-2/30-2.

RESULTS

AE of mean TH values was lower in the CNN-PBR with HFA 24-2/30-2 correction than in the CNN-PBR alone (1.9dB vs. 2.6dB; P = 0.006). MAE of TH values was lower in the CNN-PBR with correction compared to the CNN-PBR alone (4.2dB vs. 5.3 dB; P < 0.001). The inferior temporal quadrant showed lower prediction errors compared with other quadrants.

CONCLUSIONS

The performance of a DL model to predict 10-2 VF from macular OCT was improved by the correction with HFA 24-2/30-2.

TRANSLATIONAL RELEVANCE

This model can reduce the burden of additional HFA 10-2 by making the best use of routinely performed HFA 24-2/30-2 and macular OCT.

摘要

目的

研究基于 Humphrey 视野分析仪(HFA)24-2/30-2 视野(VF)的校正是否可以提高深度学习模型预测从黄斑光学相干断层扫描(OCT)测量值到 HFA 10-2VF 测试的预测性能。

方法

这是一项多中心、横断面研究。训练数据集包括 285 名受试者的 493 只眼(407 只为开角型青光眼[OAG],86 只为正常),他们接受了 HFA 10-2 测试和黄斑 OCT 检查。独立测试数据集包括 82 名受试者的 104 只 OAG 眼,他们接受了 HFA 10-2 测试、HFA 24-2/30-2 测试和黄斑 OCT 检查。训练卷积神经网络(CNN)DL 模型以预测黄斑 OCT 测量的视网膜厚度与 HFA 10-2 中的阈值灵敏度(TH)值。通过基于模式的正则化(PBR)对预测的 TH 值进行修改,并使用 HFA 24-2/30-2 进行校正。比较 CNN-PBR 单独模型和 CNN-PBR 与 HFA 24-2/30-2 校正的模型之间平均 TH 值的绝对误差(AE)和 TH 值的平均绝对误差(MAE)。

结果

与 CNN-PBR 单独模型相比,使用 HFA 24-2/30-2 校正的 CNN-PBR 的平均 TH 值的 AE 较低(1.9dB 与 2.6dB;P=0.006)。与 CNN-PBR 单独模型相比,使用校正的 CNN-PBR 的 TH 值的 MAE 较低(4.2dB 与 5.3dB;P<0.001)。下颞象限的预测误差低于其他象限。

结论

通过使用 HFA 24-2/30-2 进行校正,DL 模型预测黄斑 OCT 中的 10-2VF 的性能得到提高。

翻译是否准确,还需要结合原文的上下文来判断,如果你有更多的信息,请提供给我,我会尽力提供更好的翻译。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a104/8626848/d400d4a5ef9b/tvst-10-13-28-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验