Suppr超能文献

基于拓扑结构的天然气管道网络连通性可靠性分析与优化研究

Research on the connectivity reliability analysis and optimization of natural gas pipeline network based on topology.

作者信息

Yang Xiuxuan, Chen Kun, Liu Minghui

机构信息

College of safety engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.

Chongqing Key Laboratory of Oil and Gas Production Safety and Risk Control, Chongqing, 401331, China.

出版信息

Sci Rep. 2025 Apr 18;15(1):13442. doi: 10.1038/s41598-025-98749-8.

Abstract

The rapid expansion of natural gas pipeline networks in China necessitates robust reliability assessment and optimization frameworks, particularly for large-scale looped configurations where traditional tree-based models fall short. This study proposes an integrated framework combining connectivity reliability evaluation with adaptive topology optimization. First, a minimum path set-based reliability model is developed, leveraging an enhanced depth-first search (DFS) algorithm for efficient path identification and binary decision diagrams (BDD) to eliminate 92% of redundant terms in reliability formulas, reducing computational complexity by 40% compared to Monte Carlo simulations. Second, an adaptive genetic algorithm (AGA) is designed to optimize network topology, dynamically adjusting crossover and mutation rates (0.8≤[Formula: see text]≤0.01, 0.01≤ [Formula: see text]≤ 0.8) based on population diversity, while enforcing constraints through penalty functions (node degree [Formula: see text]=4, pipeline length [Formula: see text]=120 km). Case studies on a regional pipeline network (89 nodes, 98 segments) demonstrate that loop structures exhibit 25.7% higher average reliability ([Formula: see text]= 0.87792) than branch nodes (v79: [Formula: see text]=0.60933). The AGA-driven optimization increases system-wide connectivity reliability ([Formula: see text]) from 0.03 to 0.247 by strategically adding redundant pipelines (v71-v77), outperforming particle swarm optimization (PSO) by 65%. Key findings reveal that centralized gas source layouts and looped configurations significantly enhance redundancy, with critical segments showing 34% higher D-connectivity importance post-optimization. This work provides a scalable, training-free solution for pipeline network design, balancing computational efficiency (68.7s for 200-node networks) with engineering constraints, and offers actionable insights for infrastructure resilience enhancement.

摘要

中国天然气管道网络的迅速扩张需要强大的可靠性评估和优化框架,特别是对于传统树形模型无法适用的大规模环状结构。本研究提出了一种将连通性可靠性评估与自适应拓扑优化相结合的综合框架。首先,开发了一种基于最小路径集的可靠性模型,利用增强深度优先搜索(DFS)算法进行高效路径识别,并使用二叉决策图(BDD)消除可靠性公式中92%的冗余项,与蒙特卡罗模拟相比,计算复杂度降低了40%。其次,设计了一种自适应遗传算法(AGA)来优化网络拓扑,根据种群多样性动态调整交叉和变异率(0.8≤[公式:见原文]≤0.01,0.01≤[公式:见原文]≤0.8),同时通过惩罚函数(节点度[公式:见原文]=4,管道长度[公式:见原文]=120 km)来强制执行约束。对一个区域管道网络(89个节点,98段)的案例研究表明,环状结构的平均可靠性([公式:见原文]=0.87792)比分支节点(v79:[公式:见原文]=0.60933)高25.7%。AGA驱动的优化通过战略性地添加冗余管道(v71-v77)将全系统连通性可靠性([公式:见原文])从0.03提高到0.247,比粒子群优化(PSO)性能优65%。关键发现表明,集中式气源布局和环状结构显著提高了冗余性,优化后关键段的D连通性重要性提高了34%。这项工作为管道网络设计提供了一种可扩展的、无需训练的解决方案,在计算效率(200节点网络为68.7秒)和工程约束之间取得平衡,并为增强基础设施弹性提供了可操作的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/927d/12008401/f875f54bb881/41598_2025_98749_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验