Suppr超能文献

一种用于预测食管癌患者腹部淋巴结复发的动态列线图。

A dynamic nomogram for predicting abdominal lymph node recurrence in patients with esophageal carcinoma.

作者信息

Xu Zhi-Chen, Su Bao-An, Lin Ming-Qiang, Li Jian-Cheng, Chen Ju-Hui, Xu Qing-Hua, Qu Meng-Ke

机构信息

First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, 362000, People's Republic of China.

Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, 350014, People's Republic of China.

出版信息

Sci Rep. 2025 Apr 18;15(1):13412. doi: 10.1038/s41598-025-97774-x.

Abstract

Patients with middle and lower thoracic esophageal carcinoma (TEC) after surgery are prone to develop abdominal lymph node recurrence (LNR). However, questions remain regarding the indications for postoperative abdominal radiotherapy. We aimed to identify the risk factors for abdominal LNR and to develop a dynamic nomogram for predicting abdominal LNR. We reviewed 1004 patients with middle and lower TEC treated with three-field lymph node dissection between January 2010 and December 2020 at two clinical centers. Risk factors for abdominal LNR were identified using least absolute shrinkage and selection operator (LASSO) logistic regression analysis. A dynamic nomogram was then developed. Performance was evaluated using receiver operating characteristic (ROC) curve , calibration curve and decision curve analysis. The rates of abdominal LNR in the training, internal test and external test cohorts were 25.91%, 23.40% and 23.98%, respectively. A dynamic nomogram was developed to predict the abdominal LNR in patients with middle and lower TEC. The main predictors included tumor location, pathologic N stage and number of preoperative abdominal LNM. The AUC of the training, internal test, and external test cohorts were 0.767 (95%CI 0.7263-0.8079), 0.763 (95%CI 0.7002-0.8258) and 0.802 (95%CI 0.7419-0.8629), respectively. Furthermore, The calibration curves and DCA analysis indicated a favorable fit and significant clinical applicability of the nomogram. The dynamic nomograms is available at https://prediction-of-abdiminal-lymph-node-metastasis-in-tec.shinyapps.io/DynNomapp/ . Tumor location, pathologic N stage and number of preoperative abdominal LNM were identified as risk factors for predicting abdominal LNR. The online dynamic nomograms showed good prediction performance and convenient clinical application, which may help clinicians identify patients who require adjuvant abdominal radiotherapy.

摘要

中下段胸段食管癌(TEC)患者术后易发生腹部淋巴结复发(LNR)。然而,术后腹部放疗的适应证仍存在疑问。我们旨在确定腹部LNR的危险因素,并开发一种动态列线图来预测腹部LNR。我们回顾了2010年1月至2020年12月在两个临床中心接受三野淋巴结清扫术治疗的1004例中下段TEC患者。使用最小绝对收缩和选择算子(LASSO)逻辑回归分析确定腹部LNR的危险因素。然后开发了一个动态列线图。使用受试者操作特征(ROC)曲线、校准曲线和决策曲线分析来评估性能。训练队列、内部测试队列和外部测试队列中的腹部LNR发生率分别为25.91%、23.40%和23.98%。开发了一种动态列线图来预测中下段TEC患者的腹部LNR。主要预测因素包括肿瘤位置、病理N分期和术前腹部LNM数量。训练队列、内部测试队列和外部测试队列的AUC分别为0.767(95%CI 0.7263 - 0.8079)、0.763(95%CI 0.7002 - 0.8258)和0.802(95%CI 0.7419 - 0.8629)。此外,校准曲线和DCA分析表明列线图具有良好的拟合度和显著的临床适用性。动态列线图可在https://prediction-of-abdiminal-lymph-node-metastasis-in-tec.shinyapps.io/DynNomapp/获取。肿瘤位置、病理N分期和术前腹部LNM数量被确定为预测腹部LNR的危险因素。在线动态列线图显示出良好的预测性能和便捷的临床应用,这可能有助于临床医生识别需要辅助腹部放疗的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dae5/12008397/35896ad5211c/41598_2025_97774_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验