Churilov Leonid, Hayward Kathryn, Yogendrakumar Vignan, Andrew Nadine
Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Heidelberg, VIC, Australia.
Department of Neurology, Royal Melbourne Hospital, Parkville, Australia.
Eur Stroke J. 2025 Apr 19:23969873251332118. doi: 10.1177/23969873251332118.
Routinely-collected health data and emerging data-linkage capabilities provide researchers and clinicians with rich opportunities to answer important research questions by conducting observational studies. We provide stroke researchers with 10 important points to consider and implement to ensure the validity and interpretability of descriptive epidemiology and causal inference studies based on observational data. We discuss different types of observational studies and biases that may arise in such studies. We review types of causal effects and the use of Target Trial emulation and Directed Acyclic Graphs to improve validity of observational studies. We also illustrate appropriate and inappropriate use of covariate adjustment for the analyses of observational studies and review the methods for estimating the effects of treatments, interventions, and exposures in causal inference studies. Finally, we provide recommendations for clinical researchers and journal manuscript reviewers in stroke domain and beyond for the appropriate use and reporting of these methods.
常规收集的健康数据以及新出现的数据链接能力为研究人员和临床医生提供了丰富的机会,通过开展观察性研究来回答重要的研究问题。我们为中风研究人员提供10个要点以供考虑和实施,以确保基于观察性数据的描述性流行病学和因果推断研究的有效性和可解释性。我们讨论了不同类型的观察性研究以及此类研究中可能出现的偏倚。我们回顾了因果效应的类型以及使用目标试验模拟和有向无环图来提高观察性研究的有效性。我们还举例说明了观察性研究分析中协变量调整的恰当和不恰当使用,并回顾了因果推断研究中估计治疗、干预和暴露效应的方法。最后,我们为中风领域及其他领域的临床研究人员和期刊稿件评审人员提供建议,以恰当使用和报告这些方法。