Hernán Miguel A, Dahabreh Issa J, Dickerman Barbra A, Swanson Sonja A
CAUSALab, Department of Epidemiology, Harvard T.H. Chan School of Public Health, and Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts (M.A.H.).
CAUSALab, Department of Epidemiology, Harvard T.H. Chan School of Public Health; Department of Biostatistics, Harvard T.H. Chan School of Public Health; and Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts (I.J.D.).
Ann Intern Med. 2025 Mar;178(3):402-407. doi: 10.7326/ANNALS-24-01871. Epub 2025 Feb 18.
When randomized trials are not available to answer a causal question about the comparative effectiveness or safety of interventions, causal inferences are drawn using observational data. A helpful 2-step framework for causal inference from observational data is 1) specifying the protocol of the hypothetical randomized pragmatic trial that would answer the causal question of interest (the target trial), and 2) using the observational data to attempt to emulate that trial. The target trial framework can improve the quality of observational analyses by preventing some common biases. In this article, we discuss the utility and scope of applications of the framework. We clarify that target trial emulation resolves problems related to incorrect design but not those related to data limitations. We also describe some settings in which adopting this approach is advantageous to generate effect estimates that can close the gaps that randomized trials have not filled. In these settings, the target trial framework helps reduce the ambiguity of causal questions.
当没有随机试验来回答关于干预措施的比较有效性或安全性的因果问题时,就会使用观察性数据进行因果推断。一个有助于从观察性数据进行因果推断的两步框架是:1)指定一个假设的随机实用试验方案,该方案将回答感兴趣的因果问题(目标试验);2)使用观察性数据来尝试模拟该试验。目标试验框架可以通过防止一些常见偏差来提高观察性分析的质量。在本文中,我们讨论该框架的实用性和应用范围。我们阐明,目标试验模拟解决了与错误设计相关的问题,但没有解决与数据限制相关的问题。我们还描述了一些采用这种方法有利的情况,以生成能够填补随机试验未填补空白的效应估计值。在这些情况下,目标试验框架有助于减少因果问题的模糊性。