Yang Ai-Su, Wang Hong-Siang, Li Te-Jung, Liu Chin-Hsin, Chen Chung-Ming
Department of Biomedical Engineering, National Taiwan University, Taipei, 100, Taiwan.
Department of Ophthalmology, Yonghe Cardinal Tien Hospital, New Taipei City, 234, Taiwan.
Sci Rep. 2025 Apr 19;15(1):13614. doi: 10.1038/s41598-025-97883-7.
Early-stage glaucoma diagnosis is crucial for preventing permanent structural damage and irreversible vision loss. While various machine-learning approaches have been developed for glaucoma diagnosis, only a few specifically address early-stage detection. Moreover, existing early-stage detection methods rely on unimodal information and exclude subjects with high myopia, which contradicts clinical practice and overlooks the adverse effect of high myopia on prediction performance. To develop a clinically practical tool, this study proposes a deep-learning-based, end-to-end early-stage glaucoma detection framework designed for a cohort likely with high myopia. This framework uniquely integrates functional information from visual field (VF) parameters of standard automated perimetry (SAP) and Pulsar perimetry (PP) with structural information derived from optical coherence tomography (OCT) thickness maps. It comprises three key components: 3D OCT ganglion cell complex (GCC) layer segmentation, thickness map generation, and early-stage glaucoma detection. Evaluated on 394 subjects using five-time, 10-fold cross-validation, the proposed system achieved a mean area under the receiver operating characteristic (ROC) curve of 0.887 ± 0.006, outperforming the Asaoka method without transfer learning and nine models based solely on VF parameters. Results further confirmed that incorporating SAP and PP parameters was essential for mitigating the adverse effects of high myopia.
早期青光眼诊断对于预防永久性结构损伤和不可逆的视力丧失至关重要。虽然已经开发了各种用于青光眼诊断的机器学习方法,但只有少数专门针对早期检测。此外,现有的早期检测方法依赖于单峰信息,并且排除了高度近视患者,这与临床实践相矛盾,并且忽视了高度近视对预测性能的不利影响。为了开发一种临床实用工具,本研究提出了一种基于深度学习的端到端早期青光眼检测框架,该框架专为可能患有高度近视的队列设计。该框架独特地将标准自动视野计(SAP)和脉冲星视野计(PP)的视野(VF)参数中的功能信息与从光学相干断层扫描(OCT)厚度图得出的结构信息相结合。它包括三个关键组件:3D OCT神经节细胞复合体(GCC)层分割、厚度图生成和早期青光眼检测。使用五次10折交叉验证在394名受试者上进行评估,所提出的系统在接收器操作特征(ROC)曲线下的平均面积达到0.887±0.006,优于没有迁移学习的浅冈方法和仅基于VF参数的九个模型。结果进一步证实,纳入SAP和PP参数对于减轻高度近视的不利影响至关重要。