Suppr超能文献

基于光学相干断层扫描和视野功能的深度关系 Transformer 诊断青光眼。

Deep Relation Transformer for Diagnosing Glaucoma With Optical Coherence Tomography and Visual Field Function.

出版信息

IEEE Trans Med Imaging. 2021 Sep;40(9):2392-2402. doi: 10.1109/TMI.2021.3077484. Epub 2021 Aug 31.

Abstract

Glaucoma is the leading reason for irreversible blindness. Early detection and timely treatment of glaucoma are essential for preventing visual field loss or even blindness. In clinical practice, Optical Coherence Tomography (OCT) and Visual Field (VF) exams are two widely-used and complementary techniques for diagnosing glaucoma. OCT provides quantitative measurements of the optic nerve head (ONH) structure, while VF test is the functional assessment of peripheral vision. In this paper, we propose a Deep Relation Transformer (DRT) to perform glaucoma diagnosis with OCT and VF information combined. A novel deep reasoning mechanism is proposed to explore implicit pairwise relations between OCT and VF information in global and regional manners. With the pairwise relations, a carefully-designed deep transformer mechanism is developed to enhance the representation with complementary information for each modal. Based on reasoning and transformer mechanisms, three successive modules are designed to extract and collect valuable information for glaucoma diagnosis, the global relation module, the guided regional relation module, and the interaction transformer module, namely. Moreover, we build a large dataset, namely ZOC-OCT&VF dataset, which includes 1395 OCT-VF pairs for developing and evaluating our DRT. We conduct extensive experiments to validate the effectiveness of the proposed method. Experimental results show that our method achieves 88.3% accuracy and outperforms the existing single-modal approaches with a large margin. The codes and dataset will be publicly available in the future.

摘要

青光眼是导致不可逆性失明的主要原因。早期发现和及时治疗青光眼对于防止视野丧失甚至失明至关重要。在临床实践中,光学相干断层扫描(OCT)和视野(VF)检查是诊断青光眼的两种广泛使用且互补的技术。OCT 提供视神经头(ONH)结构的定量测量,而 VF 测试是对周边视力的功能评估。在本文中,我们提出了一种深度关系转换器(DRT),用于结合 OCT 和 VF 信息进行青光眼诊断。提出了一种新颖的深度推理机制,以全局和局部方式探索 OCT 和 VF 信息之间隐含的成对关系。通过这些成对关系,开发了一种精心设计的深度转换器机制,以增强每个模态的互补信息表示。基于推理和转换器机制,设计了三个连续的模块来提取和收集用于青光眼诊断的有价值信息,即全局关系模块、引导区域关系模块和交互转换器模块。此外,我们构建了一个大型数据集,即 ZOC-OCT&VF 数据集,其中包含 1395 对 OCT-VF 用于开发和评估我们的 DRT。我们进行了广泛的实验来验证所提出方法的有效性。实验结果表明,我们的方法达到了 88.3%的准确率,并且比现有的单模态方法有很大的优势。代码和数据集将在未来公开。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验