Suppr超能文献

DRUNET:一种用于在光学相干断层扫描图像中分割视神经乳头组织的扩张残差U型网络深度学习网络。

DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images.

作者信息

Devalla Sripad Krishna, Renukanand Prajwal K, Sreedhar Bharathwaj K, Subramanian Giridhar, Zhang Liang, Perera Shamira, Mari Jean-Martial, Chin Khai Sing, Tun Tin A, Strouthidis Nicholas G, Aung Tin, Thiéry Alexandre H, Girard Michaël J A

机构信息

Ophthalmic Engineering & Innovation Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore.

Duke-NUS, Graduate Medical School, Singapore.

出版信息

Biomed Opt Express. 2018 Jun 25;9(7):3244-3265. doi: 10.1364/BOE.9.003244. eCollection 2018 Jul 1.

Abstract

Given that the neural and connective tissues of the optic nerve head (ONH) exhibit complex morphological changes with the development and progression of glaucoma, their simultaneous isolation from optical coherence tomography (OCT) images may be of great interest for the clinical diagnosis and management of this pathology. A deep learning algorithm (custom U-NET) was designed and trained to segment 6 ONH tissue layers by capturing both the local (tissue texture) and contextual information (spatial arrangement of tissues). The overall Dice coefficient (mean of all tissues) was 0.91 ± 0.05 when assessed against manual segmentations performed by an expert observer. Further, we automatically extracted six clinically relevant neural and connective tissue structural parameters from the segmented tissues. We offer here a robust segmentation framework that could also be extended to the 3D segmentation of the ONH tissues.

摘要

鉴于视神经乳头(ONH)的神经组织和结缔组织会随着青光眼的发展和进展呈现出复杂的形态变化,从光学相干断层扫描(OCT)图像中同时分离出这些组织,对于这种疾病的临床诊断和管理可能具有重大意义。设计并训练了一种深度学习算法(定制U-NET),通过捕捉局部(组织纹理)和上下文信息(组织的空间排列)来分割6层ONH组织。与专家观察者进行的手动分割相比,总体Dice系数(所有组织的平均值)为0.91±0.05。此外,我们从分割后的组织中自动提取了六个临床相关的神经和结缔组织结构参数。我们在此提供了一个强大的分割框架,该框架也可扩展到ONH组织的三维分割。

相似文献

1
DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images.
Biomed Opt Express. 2018 Jun 25;9(7):3244-3265. doi: 10.1364/BOE.9.003244. eCollection 2018 Jul 1.
2
A Deep Learning Approach to Digitally Stain Optical Coherence Tomography Images of the Optic Nerve Head.
Invest Ophthalmol Vis Sci. 2018 Jan 1;59(1):63-74. doi: 10.1167/iovs.17-22617.
3
Towards label-free 3D segmentation of optical coherence tomography images of the optic nerve head using deep learning.
Biomed Opt Express. 2020 Oct 15;11(11):6356-6378. doi: 10.1364/BOE.395934. eCollection 2020 Nov 1.
5
Discriminating Between Papilledema and Optic Disc Drusen Using 3D Structural Analysis of the Optic Nerve Head.
Neurology. 2023 Jan 10;100(2):e192-e202. doi: 10.1212/WNL.0000000000201350. Epub 2022 Sep 29.
6
Geometric Deep Learning to Identify the Critical 3D Structural Features of the Optic Nerve Head for Glaucoma Diagnosis.
Am J Ophthalmol. 2023 Jun;250:38-48. doi: 10.1016/j.ajo.2023.01.008. Epub 2023 Jan 14.
7
Describing the Structural Phenotype of the Glaucomatous Optic Nerve Head Using Artificial Intelligence.
Am J Ophthalmol. 2022 Apr;236:172-182. doi: 10.1016/j.ajo.2021.06.010. Epub 2021 Jun 19.
8
A Digital Staining Algorithm for Optical Coherence Tomography Images of the Optic Nerve Head.
Transl Vis Sci Technol. 2017 Feb 2;6(1):8. doi: 10.1167/tvst.6.1.8. eCollection 2017 Feb.
9
Automatic Segmentation of the Optic Nerve Head Region in Optical Coherence Tomography: A Methodological Review.
Comput Methods Programs Biomed. 2022 Jun;220:106801. doi: 10.1016/j.cmpb.2022.106801. Epub 2022 Apr 6.
10
Shared-hole graph search with adaptive constraints for 3D optic nerve head optical coherence tomography image segmentation.
Biomed Opt Express. 2018 Feb 2;9(3):962-983. doi: 10.1364/BOE.9.000962. eCollection 2018 Mar 1.

引用本文的文献

5
DELR-Net: a network for 3D multimodal medical image registration in more lightweight application scenarios.
Abdom Radiol (NY). 2025 Apr;50(4):1876-1886. doi: 10.1007/s00261-024-04602-3. Epub 2024 Sep 26.
6
Deep learning and optical coherence tomography in glaucoma: Bridging the diagnostic gap on structural imaging.
Front Ophthalmol (Lausanne). 2022 Sep 21;2:937205. doi: 10.3389/fopht.2022.937205. eCollection 2022.
7
Choroidalyzer: An Open-Source, End-to-End Pipeline for Choroidal Analysis in Optical Coherence Tomography.
Invest Ophthalmol Vis Sci. 2024 Jun 3;65(6):6. doi: 10.1167/iovs.65.6.6.
8
Machine learning for medical imaging-based COVID-19 detection and diagnosis.
Int J Intell Syst. 2021 Sep;36(9):5085-5115. doi: 10.1002/int.22504. Epub 2021 May 31.
10
Creating high-resolution 3D cranial implant geometry using deep learning techniques.
Front Bioeng Biotechnol. 2023 Dec 11;11:1297933. doi: 10.3389/fbioe.2023.1297933. eCollection 2023.

本文引用的文献

1
Deep learning based retinal OCT segmentation.
Comput Biol Med. 2019 Nov;114:103445. doi: 10.1016/j.compbiomed.2019.103445. Epub 2019 Sep 17.
3
A Deep Learning Approach to Digitally Stain Optical Coherence Tomography Images of the Optic Nerve Head.
Invest Ophthalmol Vis Sci. 2018 Jan 1;59(1):63-74. doi: 10.1167/iovs.17-22617.
5
ImageJ2: ImageJ for the next generation of scientific image data.
BMC Bioinformatics. 2017 Nov 29;18(1):529. doi: 10.1186/s12859-017-1934-z.
6
Alzheimer's disease diagnostics by a 3D deeply supervised adaptable convolutional network.
Front Biosci (Landmark Ed). 2018 Jan 1;23(3):584-596. doi: 10.2741/4606.
7
ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks.
Biomed Opt Express. 2017 Jul 13;8(8):3627-3642. doi: 10.1364/BOE.8.003627. eCollection 2017 Aug 1.
8
Robust total retina thickness segmentation in optical coherence tomography images using convolutional neural networks.
Biomed Opt Express. 2017 Jun 16;8(7):3292-3316. doi: 10.1364/BOE.8.003292. eCollection 2017 Jul 1.
9
Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search.
Biomed Opt Express. 2017 Apr 27;8(5):2732-2744. doi: 10.1364/BOE.8.002732. eCollection 2017 May 1.
10
A machine-learning graph-based approach for 3D segmentation of Bruch's membrane opening from glaucomatous SD-OCT volumes.
Med Image Anal. 2017 Jul;39:206-217. doi: 10.1016/j.media.2017.04.007. Epub 2017 May 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验