Wang Shanshan, Liu Jingwu
Department of Physical Education, Changzhi University, Changzhi, Shanxi, China.
Front Public Health. 2025 Apr 4;13:1562151. doi: 10.3389/fpubh.2025.1562151. eCollection 2025.
This study investigates the potential of a deep learning-based Life Log Sharing Model (LLSM) to enhance adolescent physical fitness and exercise behaviors through personalized public health interventions.
We developed a hybrid Temporal-Spatial Convolutional Neural Network-Bidirectional Long Short-Term Memory (TS-CNN-BiLSTM) model. This model integrates temporal, textual, and visual features from multimodal life log data (exercise type, duration, intensity) to classify and predict physical activity behaviors. Two datasets, Geo-Life Log (with location data) and Time-Life Log (without location data), were constructed to evaluate the impact of spatial information on classification performance. The model utilizes CNNs for local feature extraction and BiLSTM networks to capture temporal dynamics, maintaining user privacy.
The TS-CNN-BiLSTM model achieved an average classification accuracy of 99.6% across eight physical activity types, outperforming state-of-the-art methods by 1.9-4.4%. Temporal features were identified as crucial for detecting recurring behavioral trends and periodic exercise patterns.
These findings demonstrate the efficacy of integrating multimodal life log data with deep learning for accurate physical activity classification. The high accuracy of the TS-CNN-BiLSTM model supports its potential for developing personalized health promotion strategies, including tailored interventions, behavioral incentives, and social support mechanisms, to enhance adolescent engagement in physical activities and advance public health education and personalized health management.
本研究探讨基于深度学习的生活日志共享模型(LLSM)通过个性化公共卫生干预措施来增强青少年身体素质和锻炼行为的潜力。
我们开发了一种混合的时空卷积神经网络-双向长短期记忆(TS-CNN-BiLSTM)模型。该模型整合了多模态生活日志数据(运动类型、时长、强度)中的时间、文本和视觉特征,以对身体活动行为进行分类和预测。构建了两个数据集,地理生活日志(包含位置数据)和时间生活日志(不包含位置数据),以评估空间信息对分类性能的影响。该模型利用卷积神经网络进行局部特征提取,并使用双向长短期记忆网络来捕捉时间动态,同时保护用户隐私。
TS-CNN-BiLSTM模型在八种身体活动类型上的平均分类准确率达到了99.6%,比现有最先进的方法高出1.9 - 4.4%。时间特征被确定为检测重复行为趋势和周期性锻炼模式的关键因素。
这些发现证明了将多模态生活日志数据与深度学习相结合用于准确的身体活动分类的有效性。TS-CNN-BiLSTM模型的高精度支持了其在制定个性化健康促进策略方面的潜力,包括量身定制的干预措施、行为激励和社会支持机制,以提高青少年对体育活动的参与度,并推进公共健康教育和个性化健康管理。