Chen Hung-Ling, Bidaud Thomas, Scaccabarozzi Andrea, De Lépinau Romaric, Oehler Fabrice, Patriarche Gilles, Bouchoule Sophie, Harmand Jean-Christophe, Cattoni Andrea, Collin Stéphane
Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Université Paris-Saclay Palaiseau France
Institut Photovoltaïque d'Ile-de-France (IPVF) Palaiseau France.
Nanoscale Adv. 2025 Apr 10;7(11):3387-3395. doi: 10.1039/d5na00206k. eCollection 2025 May 27.
Nanowires (NWs) offer unique possibilities to control semiconductor heterostructures and polytypes at the nanometer scale. The crystal structure of GaAs can be switched from bulk cubic zinc blende (ZB) to the hexagonal wurtzite (WZ) phase, but the properties and doping of WZ GaAs are still poorly known. Here, we grow high-quality GaAs NWs containing large segments of pure ZB and WZ phases using self-catalyzed, vapor-liquid-solid molecular beam epitaxy. Undoped, Be-doped and Si-doped WZ GaAs are investigated by high-resolution cathodoluminescence (CL) at low temperature (10 K). The luminescence originating from the WZ region is unambiguously distinguished by its strong anisotropy, evidenced by polarimetry. In undoped GaAs, the WZ CL peak is found ∼1 meV higher than the free exciton energy in ZB. The recombination dynamics is probed by time-resolved CL and features a lifetime of 0.6 ns for exciton recombination and 1.65 ns for the free-electron-to-acceptor transition. From Be-doped NWs, we infer an ionization energy of ∼30 meV for the Be acceptor in GaAs WZ. The CL spectra broaden and redshift with increasing Be concentration due to the bandgap narrowing, following a trend similar to GaAs ZB. Si-doped WZ GaAs exhibits a low-energy CL peak (1.47 eV) attributed to the donor-acceptor pair recombination involving Si impurities. The degree of polarization of WZ luminescence decreases with increasing doping levels for both p-type and n-type. These results shed light on the properties and doping of WZ GaAs and show that time-resolved CL and CL polarimetry constitutes a powerful tool to characterize the crystal phase, local defect, transport and recombination mechanism at the nanoscale.
纳米线(NWs)为在纳米尺度上控制半导体异质结构和多型体提供了独特的可能性。砷化镓(GaAs)的晶体结构可以从体相立方闪锌矿(ZB)转变为六方纤锌矿(WZ)相,但WZ GaAs的性质和掺杂情况仍鲜为人知。在此,我们利用自催化的气-液-固分子束外延法生长出包含大片纯ZB相和WZ相的高质量GaAs纳米线。通过低温(10 K)下的高分辨率阴极发光(CL)对未掺杂、铍(Be)掺杂和硅(Si)掺杂的WZ GaAs进行了研究。源自WZ区域的发光通过其强烈的各向异性被明确区分,这通过偏振测量得到了证实。在未掺杂的GaAs中,发现WZ的CL峰比ZB中的自由激子能量高约1毫电子伏特。通过时间分辨CL探测了复合动力学,其特征在于激子复合的寿命为0.6纳秒,自由电子到受主跃迁的寿命为1.65纳秒。从Be掺杂的纳米线中,我们推断出GaAs WZ中Be受主的电离能约为30毫电子伏特。由于带隙变窄,随着Be浓度的增加,CL光谱变宽并发生红移,遵循与GaAs ZB相似的趋势。Si掺杂的WZ GaAs表现出一个低能量CL峰(1.47电子伏特),这归因于涉及Si杂质形成的施主-受主对复合。对于p型和n型,WZ发光的偏振度都随着掺杂水平的增加而降低。这些结果揭示了WZ GaAs的性质和掺杂情况,并表明时间分辨CL和CL偏振测量是表征纳米尺度上晶体相、局部缺陷、输运和复合机制的有力工具。