Fernandez Francisco, Saravanan Soorya, Omongos Rashen Lou, Troncoso Javier F, Galvez-Aranda Diego E, Franco Alejandro A
Laboratoire de Réactivité et de Chimie des Solides, UMR CNRS 7314, Université de Picardie Jules Verne, 80039 Amiens Cedex, France.
Réseau sur le Stockage Electrochimique de l´Energie (RS2E), FR CNRS 3459, Hub de l'Energie, 15 rue Baudelocque, 80039 Amiens Cedex, France.
NPJ Adv Manuf. 2025;2(1):14. doi: 10.1038/s44334-025-00024-1. Epub 2025 Apr 18.
The performance of electrochemical cells for energy storage and conversion can be improved by optimizing their manufacturing processes. This can be time-consuming and costly with the traditional trial-and-error approaches. Machine Learning (ML) models can help to overcome these obstacles. In academic research laboratories, manufacturing dataset sizes can be small, while ML models typically require large amounts of data. In this work, we propose a simple but still novel application of a Transfer Learning (TL) approach to address these manufacturing problems with a small amount of data. We have tested this approach with pre-existing experimental and stochastically generated datasets. These datasets consisted of component properties (e.g., electrode density) related to different manufacturing parameters (e.g., solid content, comma gap, coating speed). We have demonstrated the robustness of our TL approach for manufacturing problems by achieving excellent prediction performance for electrodes in lithium-ion batteries and gas diffusion layers in fuel cells.
通过优化制造工艺可以提高用于能量存储和转换的电化学电池的性能。采用传统的试错方法可能既耗时又昂贵。机器学习(ML)模型有助于克服这些障碍。在学术研究实验室中,制造数据集的规模可能较小,而ML模型通常需要大量数据。在这项工作中,我们提出了一种简单但仍然新颖的迁移学习(TL)方法应用,以用少量数据解决这些制造问题。我们已经用现有的实验数据集和随机生成的数据集测试了这种方法。这些数据集由与不同制造参数(例如,固体含量、逗号间距、涂布速度)相关的组件属性(例如,电极密度)组成。通过在锂离子电池电极和燃料电池气体扩散层方面取得优异的预测性能,我们证明了我们的TL方法在制造问题上的稳健性。