Suppr超能文献

将制造参数与电化学能源电池组件特性相关联的小数据集的迁移学习评估。

Transfer learning assessment of small datasets relating manufacturing parameters with electrochemical energy cell component properties.

作者信息

Fernandez Francisco, Saravanan Soorya, Omongos Rashen Lou, Troncoso Javier F, Galvez-Aranda Diego E, Franco Alejandro A

机构信息

Laboratoire de Réactivité et de Chimie des Solides, UMR CNRS 7314, Université de Picardie Jules Verne, 80039 Amiens Cedex, France.

Réseau sur le Stockage Electrochimique de l´Energie (RS2E), FR CNRS 3459, Hub de l'Energie, 15 rue Baudelocque, 80039 Amiens Cedex, France.

出版信息

NPJ Adv Manuf. 2025;2(1):14. doi: 10.1038/s44334-025-00024-1. Epub 2025 Apr 18.

Abstract

The performance of electrochemical cells for energy storage and conversion can be improved by optimizing their manufacturing processes. This can be time-consuming and costly with the traditional trial-and-error approaches. Machine Learning (ML) models can help to overcome these obstacles. In academic research laboratories, manufacturing dataset sizes can be small, while ML models typically require large amounts of data. In this work, we propose a simple but still novel application of a Transfer Learning (TL) approach to address these manufacturing problems with a small amount of data. We have tested this approach with pre-existing experimental and stochastically generated datasets. These datasets consisted of component properties (e.g., electrode density) related to different manufacturing parameters (e.g., solid content, comma gap, coating speed). We have demonstrated the robustness of our TL approach for manufacturing problems by achieving excellent prediction performance for electrodes in lithium-ion batteries and gas diffusion layers in fuel cells.

摘要

通过优化制造工艺可以提高用于能量存储和转换的电化学电池的性能。采用传统的试错方法可能既耗时又昂贵。机器学习(ML)模型有助于克服这些障碍。在学术研究实验室中,制造数据集的规模可能较小,而ML模型通常需要大量数据。在这项工作中,我们提出了一种简单但仍然新颖的迁移学习(TL)方法应用,以用少量数据解决这些制造问题。我们已经用现有的实验数据集和随机生成的数据集测试了这种方法。这些数据集由与不同制造参数(例如,固体含量、逗号间距、涂布速度)相关的组件属性(例如,电极密度)组成。通过在锂离子电池电极和燃料电池气体扩散层方面取得优异的预测性能,我们证明了我们的TL方法在制造问题上的稳健性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da52/12008025/d910c8f6a3e3/44334_2025_24_Fig7_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验