使用1种机器人辅助全膝关节置换系统提高效率和术中规划。

Improved Efficiency and Intraoperative Planning With 1 Robot-Assisted Total Knee Arthroplasty System.

作者信息

Braathen Dalton L, Wallace Cameron, Clapp Ian M, Blackburn Brenna E, Peters Christopher L, Archibeck Michael J

机构信息

Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA.

出版信息

Arthroplast Today. 2025 Apr 8;33:101684. doi: 10.1016/j.artd.2025.101684. eCollection 2025 Jun.

Abstract

BACKGROUND

Robotic-assisted total knee arthroplasty (rTKA) has garnered significant interest for its potential to enhance surgical precision and accuracy. However, the adoption of such systems poses concerns, including longer operative times and learning curves, potentially reducing efficiency. This study aimed to evaluate the learning curve associated with the Robotic Surgical Assistant (ROSA) system for rTKA.

METHODS

This retrospective review analyzed the first 75 ROSA rTKA procedures performed by each of 2 fellowship-trained arthroplasty surgeons (150 total procedures) at a high-volume institution. Time stamps within the robotic software were recorded for each case, along with tourniquet time. Statistical analyses included descriptive statistics, -tests, and multilevel regression.

RESULTS

Comparison of each surgeon's first 20 and last 20 cases revealed significant decreases in tourniquet time (61.4-56.7 minutes;  = .0417) and planning time (13.49-6.68 minutes;  = .0078). Landmark femur and tibia times remained stable ( = .6542 and  = .9440). Knee state evaluation time showed a trend of reduction from 9.22 to 7.33 minutes ( = .1335), and resection time from 13.66 to 12.92 minutes ( = .4372). Regression analysis indicated significant reductions in tourniquet time (β = -0.11;  = .0089) and planning time (β = -0.08;  = .0064).

CONCLUSIONS

This study demonstrates that execution of ROSA rTKA becomes more efficient over the first 75 cases. The greatest improvement with experience is the time spent on the planning panel, the cognitive portion of the procedure. These data provide surgeons with the confidence that the technical portions of the case are quick to learn and guide industry to focus on teaching effective adjustments on the planning panel.

摘要

背景

机器人辅助全膝关节置换术(rTKA)因其提升手术精准度的潜力而备受关注。然而,采用此类系统引发了一些担忧,包括手术时间延长和学习曲线问题,这可能会降低效率。本研究旨在评估机器人手术助手(ROSA)系统用于rTKA的学习曲线。

方法

这项回顾性研究分析了一家大型机构中两名接受过专科培训的关节置换外科医生各自完成的前75例ROSA rTKA手术(共150例手术)。记录了每个病例在机器人软件中的时间戳以及止血带使用时间。统计分析包括描述性统计、t检验和多水平回归。

结果

比较每位外科医生的前20例和后20例病例发现,止血带使用时间(61.4 - 56.7分钟;P = 0.0417)和规划时间(13.49 - 6.68分钟;P = 0.0078)显著减少。股骨和胫骨标志点放置时间保持稳定(P = 0.6542和P = 0.9440)。膝关节状态评估时间呈从9.22分钟降至7.33分钟的趋势(P = 0.1335),截骨时间从13.66分钟降至12.92分钟(P = 0.4372)。回归分析表明止血带使用时间(β = -0.11;P = 0.0089)和规划时间(β = -0.08;P = 0.0064)显著减少。

结论

本研究表明,在完成前75例病例的过程中,ROSA rTKA的执行效率更高。随着经验的增加,最大的改进在于花费在规划面板上的时间,即手术的认知部分。这些数据让外科医生相信该病例的技术部分易于学习,并引导行业专注于教授在规划面板上进行有效调整。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0292/12008555/bf5778352052/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索