Suppr超能文献

在DFT++ 方案中主动学习高维可转移哈伯德模型及参数

Active Learning the High-Dimensional Transferable Hubbard and Parameters in the DFT + + Scheme.

作者信息

Yu Wei, Zhang Zhaofu, Wan Xuhao, Guo Hailing, Gui Qingzhong, Peng Yuan, Li Yifei, Fu Wenjie, Lu Dingyi, Ye Yuchen, Guo Yuzheng

机构信息

School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China.

The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China.

出版信息

J Chem Theory Comput. 2023 Sep 26;19(18):6425-6433. doi: 10.1021/acs.jctc.2c01116. Epub 2023 Sep 14.

Abstract

Density functional theory (DFT) is a powerful quantum mechanical computational tool to perform electronic structure calculations for materials. Few DFT methods can ensure accuracy and efficiency simultaneously. DFT + + is an alternative effective approach to overcome this drawback. However, the accuracy sensitively depends on the self-consistent estimation of the high-dimensional onsite and intersite Hubbard interaction and terms. We propose Bayesian optimization using a dropout (BOD) algorithm, one type of active learning method, to optimize and terms. The DFT + + with / obtained by BOD can produce improved electronic properties for diverse bulk materials of comparable quality to the hybrid functionals with lower computational cost compared to the linear response approach. Note that the band gaps calculated by BOD are somewhat different from that of hybrid functionals by simply applying the same / parameters as in the case of surface slabs and interfaces, which suggests that the transferability of / from the bulk models to slabs and interfaces is not as well as expected. BOD is extended to calculate the / parameters for slabs and interfaces and reach similar results as bulk solids. Moreover, we find that the / are reasonably transferable between surface slabs and interfaces with different thicknesses under various effects of quantum confinement, which contributes to fast access to the electronic properties of large-scale systems with higher accuracy.

摘要

密度泛函理论(DFT)是一种用于对材料进行电子结构计算的强大量子力学计算工具。很少有DFT方法能够同时确保准确性和效率。DFT++是克服这一缺点的一种有效替代方法。然而,准确性敏感地依赖于高维在位和在位间哈伯德相互作用和项的自洽估计。我们提出使用一种主动学习方法——带失活单元的贝叶斯优化(BOD)算法来优化和项。通过BOD获得的具有/的DFT++能够为各种块状材料产生改进的电子性质,与混合泛函相比质量相当,且与线性响应方法相比计算成本更低。需要注意的是,通过BOD计算的带隙与通过简单应用与表面平板和界面情况相同的/参数的混合泛函的带隙有所不同,这表明/从块状模型到平板和界面的可转移性不如预期。BOD被扩展用于计算平板和界面的/参数,并得到与块状固体相似的结果。此外,我们发现/在量子限制的各种影响下,在不同厚度的表面平板和界面之间具有合理的可转移性,这有助于以更高的准确性快速获取大规模系统的电子性质。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验